如圖,矩形OABC的兩邊在坐標(biāo)軸上,且A(0,-2),AB=4,連接AC,拋物線y=x2+bx+c經(jīng)過A,B兩點(diǎn).點(diǎn)P由點(diǎn)A出發(fā)以每秒1個(gè)單位的速度沿AB邊向點(diǎn)B移動(dòng),1秒后點(diǎn)Q也由點(diǎn)A出發(fā)以每秒7個(gè)單位的速度沿AO,OC,CB邊向點(diǎn)B移動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止移動(dòng).
(1)求拋物線的解析式;
(2)當(dāng)P運(yùn)動(dòng)到OC上時(shí),設(shè)點(diǎn)P的移動(dòng)時(shí)間為t秒,當(dāng)PQ⊥AC時(shí),求t的值;
(3)當(dāng)PQAC時(shí),對于拋物線對稱軸上一點(diǎn)H,∠HOQ>∠POQ,求點(diǎn)H的縱坐標(biāo)的取值范圍.
(1)∵矩形OABC的兩邊在坐標(biāo)軸上,且A(0,-2),AB=4,
∴B點(diǎn)坐標(biāo)為:(4,-2),
∴將A,B兩點(diǎn)代入y=x2+bx+c得:
c=-2
16+4b+c=-2
,
解得:
b=-4
c=-2
,
∴拋物線解析式為:y=x2-4x-2;

(2)由題意知:A點(diǎn)移動(dòng)路程為AP=t,
Q點(diǎn)移動(dòng)路程為7(t-1)=7t-7.
當(dāng)Q點(diǎn)在OA上時(shí),即0≤7t-7<2,1≤t<
9
7
時(shí),
如圖1,若PQ⊥AC,則有Rt△QAPRt△ABC.
QA
AB
=
AP
BC
,即
7t-7
4
=
t
2
,
∴t=
7
5

7
5
9
7

∴此時(shí)t值不合題意.
當(dāng)Q點(diǎn)在OC上時(shí),即2≤7t-7<6,
9
7
≤t<
13
7
時(shí),
如圖2,過Q點(diǎn)作QD⊥AB.
∴AD=OQ=7(t-1)-2=7t-9.
∴DP=t-(7t-9)=9-6t.
若PQ⊥AC,易證Rt△QDPRt△ABC,
QD
AB
=
DP
BC
,即
2
4
=
9-6t
2
,
∴t=
4
3
,
9
7
4
3
13
7

∴t=
4
3
符合題意.
當(dāng)Q點(diǎn)在BC上時(shí),即6≤7t-7≤8,
13
7
≤t≤
15
7
時(shí),
如圖3,若PQ⊥AC,過Q點(diǎn)作QGAC,
則QG⊥PG,即∠GQP=90°.
∴∠QPB>90°,這與△QPB的內(nèi)角和為180°矛盾,
此時(shí)PQ不與AC垂直.
綜上所述,當(dāng)t=
4
3
時(shí),有PQ⊥AC.

(3)當(dāng)PQAC時(shí),如圖4,△BPQ△BAC,
BP
BA
=
BQ
BC
,
4-t
4
=
8-7(t-1)
2
,
解得t=2,即當(dāng)t=2時(shí),PQAC.
此時(shí)AP=2,BQ=CQ=1,
∴P(2,-2),Q(4,-1).
拋物線對稱軸的解析式為x=2,
當(dāng)H1為對稱軸與OP的交點(diǎn)時(shí),
有∠H1OQ=∠POQ,
∴當(dāng)yH<-2時(shí),∠HOQ>∠POQ.
作P點(diǎn)關(guān)于OQ的對稱點(diǎn)P′,連接PP′交OQ于點(diǎn)M,
過P′作P′N垂直于對稱軸,垂足為N,連接OP′,
在Rt△OCQ中,∵OC=4,CQ=1.
∴OQ=
17
,
∵S△OPQ=S四邊形ABCO-S△AOP-S△COQ-S△QBP=3=
1
2
OQ×PM,
∴PM=
6
17
17
,
∴PP′=2PM=
12
17
17
,
∵∠NPP′=∠COQ.
∴△COQ△NPP′
CQ
OQ
=
P′N
PP′

∴P′N=
12
17
,PN=
48
17

∴P′(
46
17
,
14
17
),
∴直線OP′的解析式為y=
7
23
x,
∴OP′與NP的交點(diǎn)H2(2,
14
23
).
∴當(dāng)yH
14
23
時(shí),∠HOP>∠POQ.
綜上所述,當(dāng)yH<-2或yH
14
23
時(shí),∠HOQ>∠POQ.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,拋物線y=-x2+bx+c與x軸,y軸分別相交于點(diǎn)A(-1,0),B(0,3)兩點(diǎn),其頂點(diǎn)為D
(1)求該拋物線的解析式;
(2)若拋物線與x軸另一個(gè)交點(diǎn)為E,求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=kx+2經(jīng)過點(diǎn)P(1,
5
2
),與x軸相交于點(diǎn)A;拋物線y=ax2+bx(a>0)經(jīng)過點(diǎn)A和點(diǎn)P,頂點(diǎn)為M.
(1)求直線y=kx+2的表達(dá)式;
(2)求拋物線y=ax2+bx的表達(dá)式;
(3)設(shè)此直線與y軸相交于點(diǎn)B,直線BM與x軸相交于點(diǎn)C,點(diǎn)D的坐標(biāo)為(
8
3
,0),試判斷△ACB與△ABD是否相似,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對稱軸過C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線如圖所示,則該二次函數(shù)的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線l經(jīng)過點(diǎn)A(4,0)和點(diǎn)B(0,4),且與二次函數(shù)y=ax2的圖象在第一象限內(nèi)相交于點(diǎn)P,若△AOP的面積為
9
2
,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

附加題:如圖所示,已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
(1)此橋拱線所在拋物線的解析式.
(2)橋邊有一浮在水面部分高4m,最寬處12
2
m的魚船,試探索此船能否開到橋下?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,記拋物線y=-x2+1的圖象與x正半軸的交點(diǎn)為A,將線段OA分成n等份,設(shè)分點(diǎn)分別為P1,P2,…Pn-1,過每個(gè)分點(diǎn)作x軸的垂線,分別與拋物線交于點(diǎn)Q1,Q2,…,Qn-1,再記直角三角形OP1Q1,P1P2Q2,…,Pn-2Pn-1Qn-1的面積分別為S1,S2,…,這樣就有S1=
n2-1
2n3
,S2=
n2-4
2n3
,…;記W=S1+S2+…+Sn-1,當(dāng)n越來越大時(shí),你猜想W最接近的常數(shù)是(  )
A.
2
3
B.
1
2
C.
1
3
D.
1
4

查看答案和解析>>

同步練習(xí)冊答案