【題目】如圖1,和都是等腰直角三角形,,在線段上,連接,的延長線交于.
(1)猜想線段、的關系;(不必證明)
(2)當點為內部一點時,使點和點分別在的兩側,其它條件不變.請你在圖2中補全圖形,則(1)中結論成立嗎?若成立,請證明;若不成立,請說明理由.
【答案】(1)BE=AD,BE⊥AD;(2)(1)中結論仍然成立.
【解析】
(1)證明△BCE≌△ACD,根據全等三角形的性質即可得到結論;
(2)根據題意補全圖形,然后證明△BCE≌△ACD,根據全等三角形的性質即可得.
(1)BE=AD,BE⊥AD,理由如下:
∵△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,
∴BC=AC,EC=DC,
在△BCE和△ACD中,
,
∴△BCE≌△ACD(SAS),
∴BE=AD,∠CBE=∠CAD,
∵∠CAD+∠ADC=90°,
∴∠CBE+∠ADC=90°,
∴∠BFD=90°,
∴BE⊥AD;
(2)如圖所示,(1)中結論仍然成立,證明如下:
∵△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°
∴BC=AC,EC=DC,
∵∠ACB=∠DCE=90°,
∴∠ACB=∠DCE,
∴∠BCE=∠ACD.
在△BCE和△ACD中,
,
∴△BCE≌△ACD(SAS),
∴BE=AD,∠1=∠2,
∵∠3=∠4,
∴∠AFB=∠ACB=90°,
∴BE⊥AD.
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y1=ax2+bx+c的圖象過點A(1,0),B(﹣3,0),C(0,﹣3)
(1)求此二次函數的解析式和頂點坐標;
(2)直線y2=kx+b過B、C兩點,請直接寫出當y1>y2時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形的邊長為,點在邊上,且,將沿對折至,延長交邊于點,連接、,則下列結論:①≌;②;③∥;④與的面積相等;⑤,其中正確的個數是( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數圖象的頂點在原點O,經過點A(1, );點F(0,1)在y軸上.直線y=﹣1與y軸交于點H.
(1)求二次函數的解析式;
(2)點P是(1)中圖象上的點,過點P作x軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP;
(3)當△FPM是等邊三角形時,求P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經過A(﹣1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數關系式;
(2)設點P是直線l上的一個動點,當△PAC的周長最小時,求點P的坐標;
(3)在直線l上是否存在點M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.
(4)若拋物線頂點為D,點Q為直線AC上一動點,當△DOQ的周長最小時,求點Q的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com