如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°.點(diǎn)E是DC的中點(diǎn),過點(diǎn)E作DC的垂線交AB于點(diǎn)P,交CB的延長線于點(diǎn)M.點(diǎn)F在線段ME上,且滿足CF=AD,MF=MA.則下列結(jié)論:
①若∠MFC=120°,則∠MAB=30°;②∠MPB=90°-∠FCM;③△ABM∽△CEF; ④S梯形AMCD-2S△EFC=3S△MFC,正確的是( )
A.①②④
B.①③④
C.①②③
D.①②③④
【答案】分析:連接DF,MD,根據(jù)線段的垂直平分線的性質(zhì),以及CF=AD,MF=MA,即可證明△AMD≌△FMD≌△FMC,根據(jù)相似三角形的性質(zhì)即可判斷.
解答:解:連接DF,MD,
①∵M(jìn)E⊥CD,E為CD中點(diǎn)
∴ME垂直平分CD
∴MC=MD,
在△CMF和△DMA中,
,
∴△CMF≌△DMA
∴∠MAD=∠MFC=120°
又∵∠BAD=90°
∴∠MAB=30°
故①正確;
∴AM=2MB
②∵△CMF≌△DMA
∴∠FCM=∠ADM
又∵AD‖BC
∴∠CMD=∠ADM=∠FCM
∵M(jìn)C=MD,ME為CD邊中垂線
∴ME為∠DMC的角平分線
∴∠BMP=∠CMD=∠FCM
又∵AB⊥BC
∴∠MPB+∠BMP=90°
∴∠MPB=90°-∠FCM
故②正確;
③∵∠AMD=∠DMP=∠EMC,∠EFC=∠FMC+∠FCM
∴∠AMB=∠EFC
∵∠ABM=∠MEC
∴△ABM∽△CEF
故③正確.
④由題意得出:△AMD≌△FMD≌△FMC,
∴S△AMD=S△FMD=S△FMC
∴S梯形AMCD-S△AMD-S△FMD-S△FMC=S△DEF+S△EFC
又∵S△DEF=S△EFC
即S梯形AMCD-3S△FMC=2S△EFC
∴S梯形AMCD-2S△EFC=3S△MFC
故④正確;
故正確的是①②③④.
故選D.
點(diǎn)評:本題主要考查了線段的垂直平分線的性質(zhì)以及三角形全等的判定和性質(zhì),注意到△AMD≌△FMD≌△FMC是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點(diǎn).將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點(diǎn)以2cm/秒的速度在線段AB上由A向B勻速運(yùn)動(dòng),E點(diǎn)同時(shí)以1cm/秒的速度在線段BC上由B向C勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設(shè)四邊形AFEC的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點(diǎn)F,交CD于點(diǎn)G、H.過點(diǎn)F引⊙O的切線交BC于點(diǎn)N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設(shè)∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點(diǎn)E、F分別是腰AD、BC上的動(dòng)點(diǎn),點(diǎn)G在AB上,且四邊形AEFG是矩形.設(shè)FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關(guān)式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點(diǎn)F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時(shí)BF的長;
(3)當(dāng)∠ABC=60°時(shí),矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P以2cm/s的速度向點(diǎn)B移動(dòng),點(diǎn)Q以1cm/s的速度向點(diǎn)D移動(dòng),當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).
(1)經(jīng)過幾秒鐘,點(diǎn)P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時(shí)刻,使得PD恰好平分∠APQ?若存在,求出此時(shí)的移動(dòng)時(shí)間;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案