【題目】如圖,在△ABC中,AB=AC,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足分別為E,F.則下列結(jié)論:①AD上任意一點(diǎn)到點(diǎn)C,B的距離相等;②AD上任意一點(diǎn)到邊AB,AC的距離相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中正確的個(gè)數(shù)為( )
A. 4 B. 3 C. 2 D. 1
【答案】A
【解析】
根據(jù)等腰三角形三線合一的性質(zhì)可得AD垂直平分BC,再根據(jù)線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等可得AD上任意一點(diǎn)到點(diǎn)C和點(diǎn)B的距離相等,從而判斷出①正確;根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得AD上任意一點(diǎn)到AB,AC的距離相等,從而判斷出②正確;根據(jù)等腰三角形三線合一的性質(zhì)可得③④正確.
∵AB=AC,AD是∠BAC的角平分線,
∴AD垂直平分BC,
∴AD上任意一點(diǎn)到點(diǎn)C和點(diǎn)B的距離相等,故①正確;
∵AD是∠BAC的角平分線,
∴AD上任意一點(diǎn)到AB,AC的距離相等,故②正確;
∵AB=AC,AD是∠BAC的角平分線,
∴BD=CD=BC,AD⊥BC,故③正確;
∵AD是△ABC的角平分線,DE⊥AB,DF⊥AC,
∴DE=DF,
在Rt△BDE和Rt△CDF中,
,
∴Rt△BDE≌Rt△CDF(HL),
∴∠BDE=∠CDF,故④正確;
綜上所述,結(jié)論正確的是①②③④共4個(gè)
故選A
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點(diǎn)對應(yīng)的數(shù)分別是、,為數(shù)軸上兩個(gè)動點(diǎn),它們同時(shí)向右運(yùn)動.點(diǎn)從點(diǎn)出發(fā),速度為每秒個(gè)單位長度;點(diǎn)從點(diǎn)出發(fā),速度為點(diǎn)的倍,點(diǎn)為原點(diǎn).
(1)當(dāng)運(yùn)動秒時(shí),點(diǎn)對應(yīng)的數(shù)分別是 、 .
(2)求運(yùn)動多少秒時(shí),點(diǎn)中恰有一個(gè)點(diǎn)為另外兩個(gè)點(diǎn)所連線段的中點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】袋小麥稱后記錄如下表(單位:),要求每袋小麥的重量控制在。即每袋小麥的重量不高于,不低于.
小麥的袋數(shù) | ||||||
小麥的重量 |
(1)這袋小麥中,符合要求的有 袋;
(2)將符合要求的小麥以為標(biāo)準(zhǔn),超出部分記為正,不足的記為負(fù)數(shù);
(3)求符合要求的小麥一共多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某種產(chǎn)品的進(jìn)價(jià)為每件40元,現(xiàn)在的售價(jià)為每件60元,每星期可賣出300件.市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每降價(jià)1元,每星期可多賣出20件,由于供貨方的原因銷量不得超過380件,設(shè)這種產(chǎn)品每件降價(jià)x元(x為整數(shù)),每星期的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)該產(chǎn)品銷售價(jià)定為每件多少元時(shí),每星期的銷售利潤最大?最大利潤是多少元?
(3)該產(chǎn)品銷售價(jià)在什么范圍時(shí),每星期的銷售利潤不低于6000元,請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一小球從斜坡D點(diǎn)處拋出,球的拋出路線可以用二次函數(shù))y=-x2+4x刻畫,斜坡OA可以用一次函數(shù)y=刻畫.
(1)請用配方法求二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);
(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo)
(3)連接拋物線的最高點(diǎn)P與點(diǎn)O、A得△POA,求△POA的面積;
(4)在OA上方的拋物線上存在一點(diǎn)M(M與P不重合),△MOA的面積等于△POA的面積,請直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,完成證明及理由
已知:∠1=∠E,∠B=∠D
求證:AB∥CD
證明:∵ ∠1=∠E( )
∴_______∥_______ ( )
∴ ∠D+∠2=180°( )
∵ ∠B=∠D( )
∴ ∠_______+ ∠_______ = 180°( )
∴ AB∥CD( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一坐標(biāo)系中,一次函數(shù)y=ax+b與二次函數(shù)y=ax2+b的大致圖象是( 。
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)-42×-(-5)×0.25×(-4)3
(2)(4-3)×(-2)-2÷(-)
(3)(-)2÷(-)4×(-1)4 -(1+1-2)×24
(4)(-)×52÷|-|+(-)0+(0.25)2019×42019
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com