【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時成立的是( )
A. B. C. D.
【答案】C
【解析】
利用拋物線開口方向得到a>0,利用拋物線的對稱軸在直線x=1的右側(cè)得到b<0,b<-2a,即b+2a<0,利用拋物線與y軸交點在x軸下方得到c<0,也可判斷abc>0,利用拋物線與x軸有2個交點可判斷b2-4ac>0,利用x=1可判斷a+b+c<0,利用上述結(jié)論可對各選項進行判斷.
∵拋物線開口向上,
∴a>0,
∵拋物線的對稱軸在直線x=1的右側(cè),
∴x=->1,
∴b<0,b<-2a,即b+2a<0,
∵拋物線與y軸交點在x軸下方,
∴c<0,
∴abc>0,
∵拋物線與x軸有2個交點,
∴△=b2-4ac>0,
∵x=1時,y<0,
∴a+b+c<0.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年10月23日,港珠澳大橋正式開通.港珠澳大橋東起香港口岸人工島,向西止于珠海洪灣,總長約55千米,是粵港澳三地首次合作共建的超大型跨海交通工程.10月24日正式通車當(dāng)天,甲乙兩輛巴士同時從香港國際機場附近的香港口岸人工島出發(fā),已知甲乙兩巴士的速度比是,乙巴士比甲巴士早11分鐘到達洪灣,求兩車的平均速度各是多少千米/時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+3與兩坐標軸交于A、B兩點,拋物線y=﹣x2+bx+c過A、B兩點,且交x軸的正半軸于點C.
(1)求A、B兩點的坐標;
(2)求拋物線的解析式和點C的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交CD于點G,AD=AE.若AD=5,DE=6,則AG的長是( 。
A. 6B. 8C. 10D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,AB=OB,點E、點F分別是OA、OD的中點,連接EF,∠CEF=45°,EM⊥BC于點M,EM交BD于點N,F(xiàn)N=,則線段BC的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=﹣x2﹣6x+21.求:
(1)直接寫出拋物線y=﹣x2﹣6x+21的頂點坐標;
(2)當(dāng)x>2時,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,然后解答問題:
問題:分解因式:.
解答:把帶入多項式,發(fā)現(xiàn)此多項式的值為0,由此確定多項式中有因式,于是可設(shè),分別求出,的值.再代入,就容易分解多項式,這種分解因式的方法叫做“試根法”.
(1)求上述式子中,的值;
(2)請你用“試根法”分解因式:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,直線l:y=x+m交x軸于點A,二次函數(shù)y=ax2﹣3ax+c(a≠0,且a、c是常數(shù))的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,與直線l交于點D,已知CD與x軸平行,且S△ACD:S△ABD=3:5.
(1)求點A的坐標;
(2)求此二次函數(shù)的解析式;
(3)點P為直線l上一動點,將線段AC繞點P順時針旋轉(zhuǎn)α°(0°<α°<360°)得到線段A'C'(點A,A'是對應(yīng)點,點C,C'是對應(yīng)點).請問:是否存在這樣的點P,使得旋轉(zhuǎn)后點A'和點C'分別落在直線l和拋物線y=ax2﹣3ax+c的圖象上?若存在,請直接寫出點A'的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,M,N分別為BC,CD的中點,AM=1,AN=2,∠MAN=60°,AM ,DC的延長線相交于點E,則AB的長為_____________;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com