【題目】為落實疫情期間的垃圾分類,樹立全面環(huán)保意識,某校舉行了“垃圾分類,綠色環(huán)保”知識競賽活動,根據(jù)學(xué)生的成績劃分為,,,四個等級,并繪制了不完整的兩種統(tǒng)計圖:
根據(jù)圖中提供的信息,回答下列問題:
(1)參加知識競賽的學(xué)生共有______人,并把條形統(tǒng)計圖補(bǔ)充完整;
(2)扇形統(tǒng)計圖中,______,______,等級對應(yīng)的圓心角為______度;
(3)小明是四名獲等級的學(xué)生中的一位,學(xué)校將從獲等級的學(xué)生中任選取2人,參加市舉辦的知識競賽,請用列表法或畫樹狀圖,求小明被選中參加區(qū)知識競賽的概率.
【答案】(1)40,條形統(tǒng)計圖見解析;(2)10,40,144;(3)
【解析】
(1)從兩個統(tǒng)計圖可得,“D級”的有12人,占調(diào)查人數(shù)的30%,可求出調(diào)查人數(shù);進(jìn)而求出“B級”的人數(shù),即可補(bǔ)全條形統(tǒng)計圖;
(2)計算出“A級”所占的百分比,“C級”所占的百分比,進(jìn)而求出“C級”所對應(yīng)的圓心角的度數(shù);
(3)用列表法列舉出所有等可能出現(xiàn)的情況,從中找出符合條件的情況數(shù),進(jìn)而求出概率.
解:(1)12÷30%=40人,40×20%=8人,
故答案為:40,補(bǔ)全條形統(tǒng)計圖如圖所示:
(2)4÷40=10%,16÷40=40%,
360°×40%=144°.
故答案為:10,40,144;
(3)設(shè)除小明以外的三個人記作A、B、C,從中任意選取2人,所有可能出現(xiàn)的情況如下:
共有12中可能出現(xiàn)的情況,其中小明被選中的有6種,
所以小明被選中參加區(qū)知識競賽的概率為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開設(shè)了“3D”打印、數(shù)學(xué)史、詩歌欣賞、陶藝制作四門校本課程,為了解學(xué)生對這四門校本課程的喜愛情況,對學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了(圖1)、(圖2)兩幅均不完整的統(tǒng)計圖.
請您根據(jù)圖中提供的信息回答下列問題:
(1)統(tǒng)計圖中的a= ,b= ;
(2)“D”對應(yīng)扇形的圓心角為 度;
(3)根據(jù)調(diào)查結(jié)果,請您估計該校1200名學(xué)生中最喜歡“數(shù)學(xué)史”校本課程的人數(shù);
(4)小明和小亮參加校本課程學(xué)習(xí),若每人從“A”、“B”、“C”三門校本課程中隨機(jī)選取一門,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一門校本課程的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為直線的拋物線經(jīng)過、兩點,與軸的另一個交點為,點在軸上,且.
(1)求該拋物線的表達(dá)式;
(2)設(shè)該拋物線上的一個動點的橫坐標(biāo)為.
①當(dāng)時,求四邊形的面積與的函數(shù)關(guān)系式,并求出的最大值;
②點在直線上,若以為邊,點、、、為頂點的四邊形是平行四邊形,請求出所有符合條件的點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣3,0),B(l,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)點P是拋物線上的動點,且滿足S△PAO=2S△PCO,求出P點的坐標(biāo);
(3)連接BC,點E是x軸一動點,點F是拋物線上一動點,若以B、C、E、F為頂點的四邊形是平行四邊形時,請直接寫出點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)與軸交于、兩點(點在點左),與軸交于點,連接,點為二次函數(shù)圖象上的動點.
(1)若的面積為3,求拋物線的解析式;
(2)在(1)的條件下,若在軸上存在點,使得,求點的坐標(biāo);
(3)若為對稱軸右側(cè)拋物線上的動點,直線交軸于點,直線交軸于點,判斷的值是否為定值,若是,求出定值,若不是請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:
圖1 圖2 圖3
(1)初步思考:
如圖1, 在中,已知,BC=4,N為BC上一點且,試說明:
(2)問題提出:
如圖2,已知正方形ABCD的邊長為4,圓B的半徑為2,點P是圓B上的一個動點,求的最小值.
(3)推廣運(yùn)用:
如圖3,已知菱形ABCD的邊長為4,∠B﹦60°,圓B的半徑為2,點P是圓B上的一個動點,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC的底邊BC=20,面積為120,點F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點D在EG上運(yùn)動,則△CDF周長的最小值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(x1,y1)、B(x2,y2)在二次函數(shù)y=x2+mx+n的圖像上,當(dāng)x1=1、x2=3時,y1=y2.
(1)若P(a,b1),Q(3,b2)是函數(shù)圖象上的兩點,b1>b2,則實數(shù)a的取值范圍是( )
A.a<1 B.a>3 C.a<1或a>3 D.1<a<3
(2)若拋物線與x軸只有一個公共點,求二次函數(shù)的表達(dá)式.
(3)若對于任意實數(shù)x1、x2都有y1+y2≥2,則n的范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com