如圖,已知點(diǎn)P、C是函數(shù)圖象上的兩點(diǎn),PA⊥x軸于A,CB⊥y軸于B,BC與PA相交于點(diǎn)E,設(shè)S△PBE=S1,S△ECA=S2,則S1與S2的關(guān)系是( )

A.S1>S2
B.S1=S2
C.S1<S2
D.S1與S2的大小不能確定
【答案】分析:過C點(diǎn)作CD⊥x軸于D,過P點(diǎn)作PG⊥y軸于G,根據(jù)反比例函數(shù)y=中k的幾何意義,及組合圖形相互間的面積關(guān)系可知S1與S2的關(guān)系.
解答:解:過C點(diǎn)作CD⊥x軸于D,過P點(diǎn)作PG⊥y軸于G,
依據(jù)比例系數(shù)k的幾何意義可得
S長方形BCDO=S長方形APGO
∵S1=(S長方形APGO-S正方形AEBO),
S2=(S長方形BCDO-S正方形AEBO),
∴S1=S2
故選B.
點(diǎn)評(píng):本題考查反比例系數(shù)k的幾何意義,過雙曲線上的任意一點(diǎn)分別向兩條坐標(biāo)作垂線,與坐標(biāo)軸圍成的矩形面積就等于|k|.該知識(shí)點(diǎn)是中考的重要考點(diǎn),同學(xué)們應(yīng)高度關(guān)注.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)P、C是函數(shù)y=
1
x
(x>0)
圖象上的兩點(diǎn),PA⊥x軸于A,CB⊥y軸于B,BC與PA相交于點(diǎn)E,設(shè)S△PBE=S1,S△ECA=S2,則S1與S2的關(guān)系是(  )
A、S1>S2
B、S1=S2
C、S1<S2
D、S1與S2的大小不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)A的坐標(biāo)是(-1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC,BC,過A,B,C三點(diǎn)作拋物線.
(1)求拋物線的解析式;
(2)點(diǎn)E是AC延長線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,連接BD,求直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.
第三問改成,在(2)的條件下,點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到精英家教網(wǎng)什么位置時(shí),△PCD的面積是△BCD面積的三分之一,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A的坐標(biāo)是(-1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過A、B、C三點(diǎn)作拋物線.
(1)求點(diǎn)C的坐標(biāo)及拋物線的解析式;
(2)點(diǎn)E是AC延長線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,求點(diǎn)D的坐標(biāo);并直接寫出直線BC、直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黑龍江)如圖,已知點(diǎn)E、F是平行四邊形ABCD對(duì)角線上的兩點(diǎn),請(qǐng)?zhí)砑右粋(gè)條件
AE=CF
AE=CF
使△ABE≌△CDF(只填一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)C、D是線段AB上兩點(diǎn),D是AC的中點(diǎn),若CB=4cm,DB=7cm,求線段AB的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案