【題目】△ABC中,∠B=38°,∠C=72°,AD為∠BAC的平分線,AF為BC邊上的高,求∠DAF的度數(shù)。
【答案】∠DAF的度數(shù)為17°.
【解析】試題分析:由三角形的內(nèi)角和是180°,可求∠BAC=70°,因為AD為∠BAC的平分線,得∠BAD=35°;又由三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,得∠ADC=∠BAD+∠B=73°;又已知AF為BC邊上的高,所以∠DAF=90°-∠ADC=17°.
解:∵∠B=38°,∠C=72°
∴∠BAC=180°-∠B-∠C=70°
又∵AD平分∠BAC,
∴∠CAD=∠BAC=35°
∵AF是△ABC的高,
∴∠AFC=90°
∴∠CAF=180°-∠AFC-∠C=18°
∴∠DAF=∠CAD-∠CAF=17°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一禮堂有長椅x條,今有若干人在禮堂開會,若每條長椅坐5人,則有一條長椅只坐2人,還空出6條長椅,由所提供的信息將人數(shù)用含x的式子表示,指出列出的式子是單項式還是多項式,并求出當(dāng)x=70時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,點P從點C開始沿射線CA方向以1cm/s的速度運動;同時,點Q也從點C開始沿射線CB方向以3cm/s的速度運動.
(1)幾秒后△PCQ的面積為3cm2?此時PQ的長是多少?(結(jié)果用最簡二次根式表示)
(2)幾秒后以A、B、P、Q為頂點的四邊形的面積為22cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】使用同一種規(guī)格的下列地磚,不能進(jìn)行平面鑲嵌的是( )
A. 正三角形地磚 B. 正四邊形地磚 C. 正五邊形地磚 D. 正六邊形地磚
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過點A(﹣3,0),B(9,0)和C(0,4).CD垂直于y軸,交拋物線于點D,DE垂直與x軸,垂足為E,l是拋物線的對稱軸,點F是拋物線的頂點.
(1)求出二次函數(shù)的表達(dá)式以及點D的坐標(biāo);
(2)若Rt△AOC沿x軸向右平移到其直角邊OC與對稱軸l重合,再沿對稱軸l向上平移到點C與點F重合,得到Rt△A1O1F,求此時Rt△A1O1F與矩形OCDE重疊部分的圖形的面積;
(3)若Rt△AOC沿x軸向右平移t個單位長度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2與Rt△OED重疊部分的圖形面積記為S,求S與t之間的函數(shù)表達(dá)式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆柋硎?/span>a的2倍與4的差比a的3倍小的關(guān)系式( 。
A. 2a+4<3a B. 2a-4<3a C. 2a-4≥3a D. 2a+4≤3a
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com