如圖,在正方形ABCD中,H是BC延長線上一點,使CE=CH,連接DH,延長BE交DH于G,則下面結論錯誤的是


  1. A.
    BE=DH
  2. B.
    ∠H+∠BEC=90°
  3. C.
    BG⊥DH
  4. D.
    ∠HDC+∠ABE=90°
B
分析:根據(jù)正方形的四條邊都相等,角都是直角,先證明△BCE和△DCH全等,再根據(jù)全等三角形對應邊相等,全等三角對應角相等,對各選項分析判斷后利用排除法.
解答:在正方形ABCD中,BC=CD,∠BCD=∠DCH=90°,
在△BCE和△DCH中,
,
∴△BCE≌△DCH(SAS),
∴BE=DH,
故A選項正確;
∠H=∠BEC,
故B選項錯誤;
∠EBC=∠HDC,
∴∠EBC+BEC=∠HDC+DEG,
∵BCD=90°,
∴∠EBC+BEC=90°,
∴∠HDC+DEG=90°,
∴BG⊥DH,
故C選項正確;
∵∠ABE+∠EBC=90°,
∴∠HDC+∠ABE=90°,
故D選項正確.
故選B.
點評:本題主要利用正方形的和三角形全等的性質求解,熟練掌握性質是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內(nèi)部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習冊答案