【題目】 為了解九年級女生的身高(單位:cm)情況,某中學對部分九年級女生身高進行了一次測量,所得數(shù)據(jù)整理后列出了頻數(shù)分布表,并畫了部分頻數(shù)分布直方圖(圖、表如圖):

分組

頻數(shù)

頻率

145.5-149.5

3

0.05

149.5-153.5

9

n

153.5-157.5

m

0.25

157.5-161.5

18

0.30

161.5-165.5

9

0.15

165.5-169.5

6

0.10

合計

M

N

根據(jù)以上圖表,回答問題.

1M=______,m=______N=______,n=______;

2)補全頻數(shù)分布直方圖;

3)若九年級有600名學生,則身高在161.5-165.5范圍約為多少人?

【答案】(1)60,15,1,0.15;(2)詳見解析;(390

【解析】

1)根據(jù)第一組的頻數(shù)是3,頻率是0.05,依據(jù)頻率=,即可求得總數(shù)M的值,然后利用公式即可求得m、n的值;

2)根據(jù)(1)中m的值即可作出統(tǒng)計圖;

3)利用600乘以身高在161.5-165.5范圍的頻率即可求解.

解:(1M=3÷0.05=60,m=60×0.25=15N=1,n==0.15;

故答案為:60,15,10.15

2)補全頻數(shù)分布直方圖如圖所示;

3600×0.15=90()

答:身高在161.5-165.5范圍約為90人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在中,,平分,,那么的長是 ____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )

A. 如圖1,展開后測得∠1=∠2

B. 如圖2,展開后測得∠1=∠2∠3=∠4

C. 如圖3,測得∠1=∠2

D. 如圖4,展開后再沿CD折疊,兩條折痕的交點為O,測得OA=OB,OC=OD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖像與軸交于點,一次函數(shù)的圖像過點,且與軸及的圖像分別交于點,點坐標為.

(1)求n的值及一次函數(shù)的解析式.

(2)求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 以下沿AB折疊的方法中,不一定能判定紙帶兩條邊ab互相平行的是( 。

A.如圖①,展開后測得∠1=2B.如圖②,展開后測得∠1=2,且∠3=4

C.如圖③,展開后測得∠1=2,且∠3=4D.如圖④,展開后測得∠1+2=180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P(a,b),若點P′的坐標為(a+kb,ka+b)(其中k為常數(shù),且k≠0),

則稱點P′為點P“k屬派生點.例如:P(1,4)的“2屬派生點P′(1+2×4,2×1+4),即P′(9,6).

(Ⅰ)點P(﹣2,3)的“3屬派生點”P′的坐標為   ;

(Ⅱ)若點P“5屬派生點”P′的坐標為(3,﹣9),求點P的坐標;

(Ⅲ)若點Px軸的正半軸上,點P“k屬派生點P′點,且線段PP′的長度為線段OP長度的2倍,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠CAB=DBA,再添加一個條件,不一定能判定ABC≌△BAD的是( 。

A. AC=BDB. 1=2C. AD=BCD. C=D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點O是等邊三角形ABC內(nèi)一點,AOB=110°,BOC=α, OC為邊作等邊三角形OCD,連接AD.

1α=150°時,試判斷AOD的形狀,并說明理由;

2探究:當a為多少度時,AOD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班將買一些乒乓球和乒乓球拍,現(xiàn)了解情況如下:甲乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍,乒乓球拍每副定價30元,乒乓球每盒定價5元,經(jīng)洽談后,甲店每買一副球拍贈一盒乒乓球,乙店全部按定價的9折優(yōu)惠,該班現(xiàn)需球拍5副,乒乓球若干盒(不小于5).問:

(1)若購買的乒乓球為盒,請分別用代數(shù)式表示在兩家店購買這些乒乓球和乒乓球拍時應該支付的費用;

(2)當購買15盒、30盒乒乓球時,請你去辦這件事,你打算去哪家商店購買,為什么?

查看答案和解析>>

同步練習冊答案