【題目】如圖,直線(xiàn)AB,CD相交于點(diǎn)O,OE是∠COB的平分線(xiàn),∠FOE=90°,若∠AOD=70°.
(1)求∠BOE的度數(shù);
(2)OF是∠AOC的平分線(xiàn)嗎?請(qǐng)說(shuō)明理由.
【答案】(1)35°;(2)OF是∠AOC的平分線(xiàn),理由見(jiàn)解析
【解析】
(1)根據(jù)角平分線(xiàn)的性質(zhì)解答;
(2)根據(jù)鄰補(bǔ)角的性質(zhì)、角平分線(xiàn)的定義解答.
(1) 因?yàn)椤?/span>BOC和∠AOD是對(duì)頂角,所以∠BOC=∠AOD=70°,因?yàn)?/span>OE是∠COB的平分線(xiàn),所以∠BOE=∠BOC=35°
(2) OF是∠AOC的平分線(xiàn),理由:因?yàn)椤?/span>AOD=70°,∠COE=∠BOE=35°,所以∠AOC=180°-70°=110°,又∠FOC=90°-∠COE=55°,所以∠AOF=∠AOC-∠FOC=110°-55°=55°,所以∠FOC=∠AOF,即OF是∠AOC的平分線(xiàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠CAD=∠BAD,DE⊥AB于E,點(diǎn)F在邊AC上,連接DF.
(1)求證:AC=AE;
(2)若AC=8,AB=10,且△ABC的面積等于24,求DE的長(zhǎng);
(3)若CF=BE,直接寫(xiě)出線(xiàn)段AB,AF,EB的數(shù)量關(guān)系:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠CAB的平分線(xiàn)交⊙O于點(diǎn)D,過(guò)點(diǎn)D作AC的垂線(xiàn)交AC的延長(zhǎng)線(xiàn)于點(diǎn)E,連接BC交AD于點(diǎn)F.
(1)猜想ED與⊙O的位置關(guān)系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:
(1)△AEF≌△CEB;
(2)AF=2CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知ab<0,則+=_____;
(2)已知ab>0,則+=______;
(3)若a,b都是非零有理數(shù),則++的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線(xiàn),它們相交于點(diǎn)O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列哪一個(gè)是假命題( )
A.五邊形外角和為
B.切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
C.關(guān)于 軸的對(duì)稱(chēng)點(diǎn)為
D.拋物線(xiàn) 對(duì)稱(chēng)軸為直線(xiàn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長(zhǎng)AE交BC的延長(zhǎng)線(xiàn)于點(diǎn)F.
求證:(1)FC=AD;
(2)AB=BC+AD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com