【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.
某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路:
(1)請你按照他們的解題思路過程完成解答過程;
(2)填空:在△DEF中,DE=15,EF=13,DF=4,則△DEF的面積是_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于☉O,∠OBC=40°,則∠A的度數(shù)為( )
A. 80° B. 100° C. 110° D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點.
(1)試按要求畫圖:
①連接,作射線;
②畫點,使的值最;
③畫點,使點既在直線上又在直線上.
(2)填空:若點是線段的中點,點在直線上,,,則的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個工廠了解情況,獲得如下信息:
信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;
信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個問題:如圖1,在邊長為的正方形ABCD各邊上分別截取AE=BF=CG=DH=1,當(dāng)∠AFQ=∠BGM=∠CHN=∠DEP=45°時,求正方形MNPQ的面積。
小明發(fā)現(xiàn):分別延長QE、MF、NG、PH交FA、GB、HC、ED的延長線于點R、S、T、W可得△RQF、△SMG、△TNH、△WPE是四個全等的等腰直角三角形(如圖2)
請回答:
(1)若將上述四個等腰直角三角形拼成一個新的正方形(無縫隙,不重疊),則這個新的正方形的邊長為__________;
(2)求正方形MNPQ的面積.
參考小明思考問題的方法,解決問題:
如圖3,在等邊△ABC各邊上分別截取AD=BE=CF,再分別過點D、E、F作BC、AC、AB的垂線,得到等邊△RPQ,若,則AD的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸表示的是5個城市的國際標(biāo)準(zhǔn)時間(單位:時),如果北京的時間是2020年1月9日上午9時,下列說法正確的是( )
A.倫敦的時間是2020年1月9日凌晨1時
B.紐約的時間是2020年1月9日晚上20時
C.多倫多的時間是2020年1月8日晚上19時
D.漢城的時間是2020年1月9日上午8時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C,E,F(xiàn),B在同一直線上,點A,D在BC異側(cè),AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“六一”兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r措施,以擴大銷售量增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.
(1)每件童裝降價多少元時,能更多讓利于顧客并且商家平均每天能贏利1200元.
(2)要想平均每天贏利2000元,可能嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是☉O的直徑,弦CD⊥AB于點G,點F是CD上一點,且滿足=,連接AF并延長交☉O于點E,連接AD、DE,若CF=2,AF=3.給出下列結(jié)論:①△ADF∽△AED;②FG=3;③tan∠E=;④S△ADF=6.
其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com