【題目】山地自行車越來越受到中學生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.

(1)今年A型車每輛售價多少元?(用列方程的方法解答)

(2)該車行計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應如何進貨才能使這批車獲利最多?

A,B兩種型號車的進貨和銷售價格如下表:

A型車

B型車

進貨價格(元)

1100

1400

銷售價格(元)

今年的銷售價格

2000

【答案】1)今年A型車每輛售價1600元;(2)當新進A型車20輛,B型車40輛時,這批車獲利最大.

【解析】試題分析:(1)設今年A型車每輛售價x元,則去年售價每輛為(x+400)元,由賣出的數(shù)量相同建立方程求出其解即可;

2)設今年新進A型車a輛,則B型車(60-a)輛,獲利y元,由條件表示出ya之間的關(guān)系式,由a的取值范圍就可以求出y的最大值.

試題解析:(1)設今年A型車每輛售價x元,則去年售價每輛為(x+400)元,由題意,得

,

解得:x=1600

經(jīng)檢驗,x=1600是原方程的根.

答:今年A型車每輛售價1600元;

2)設今年新進A型車a輛,則B型車(60-a)輛,獲利y元,由題意,得

y=1600-1100a+2000-1400)(60-a),

y=-100a+36000

∵B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,

∴60-a≤2a,

∴a≥20

∵y=-100a+36000

∴k=-1000

∴ya的增大而減。

∴a=20時,y最大=34000元.

∴B型車的數(shù)量為:60-20=40輛.

當新進A型車20輛,B型車40輛時,這批車獲利最大.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC90°ADCD,DPABP.若四邊形ABCD的面積是18,則DP的長是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點ECD的中點,點FBC邊上的一點,且EFAE.求證:AE平分∠DAF.

小林同學讀題后有一個想法,延長FE,AD交于點M,要證AE平分∠DAF,只需證AMF是等腰三角形即可.請你參考小林的想法,完成此題的證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:在正方形ABCD中,以正方形的一個頂點A為頂點,且過對角頂點C的拋物線,稱為這個正方形的以A為頂點的對角拋物線.
(1)在平面直角坐標系xOy中,點在軸正半軸上,點C在y軸正半軸上.
①如圖1,正方形OABC的邊長為2,求以O為頂點的對角拋物線;
②如圖2,在平面直角坐標系xOy中,正方形OABC的邊長為a,其以O為頂點的對角拋物線的解析式為y= x2 , 求a的值;

(2)如圖3,正方形ABCD的邊長為4,且點A的坐標為(3,2),正方形的四條對角拋物線在正方形ABCD內(nèi)分別交于點M、P、N、Q,直接寫出四邊形MPNQ的形狀和四邊形MPNQ的對角線的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)的圖象與x軸、y軸分別交于點A,B,與函數(shù)y=x的圖象交于點M,點M的橫坐標為2.在x軸上有一點P (a,0)(其中a>2),過點P作x軸的垂線,分別交函數(shù)和y=x的圖象于點C,D.

(1)求點A的坐標;

(2)若OB=CD,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:△ABC是⊙O的內(nèi)接三角形,∠ACB=45°,∠AOC=150°,過點C作⊙O的切線交AB的延長線于點D.

(1)求證:CD=CB;
(2)如果⊙O的半徑為 ,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.

(1)求證:PA是⊙O的切線;
(2)若AB=4+ ,BC=2 ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C,D在同一條直線上,點EF分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC

1)求證:四邊形BFCE是平行四邊形;

2)若AD=10,DC=3∠EBD=60°,則BE= 時,四邊形BFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索規(guī)律:觀察下面由組成的圖案和算式,解答問題:

(1)請猜想1+3+5+7+9+…+19=_______________________;

(2)請猜想1+3+5+7+9+…+(2n-1)+(2n+1) =___________;

(3)用上述規(guī)律計算:51+53+55+…+2011+2013.

查看答案和解析>>

同步練習冊答案