【題目】如圖,在四邊形ABCD中,AB∥CD,∠B=90°,AB=AD,∠BAD的平分線交BC于E,連接DE.
(1)說(shuō)明點(diǎn)D在△ABE的外接圓上;
(2)若∠AED=∠CED,試判斷直線CD與△ABE外接圓的位置關(guān)系,并說(shuō)明理由.
【答案】見(jiàn)解析
【解析】試題分析:(1)根據(jù)題中條件可證明△AOB≌△AOD,得到OD=OB,可證點(diǎn)D在△ABE的外接圓上;
(2)根據(jù)∠C=90°,可得∠CED+∠CDE=90°;利用∠ODE=∠DEC,可知∠ODC=∠CDE+∠ODE=∠CDE+∠CED=90°,即CD與△ABE的外接圓相切.
試題解析:證明:(1)∵∠B=90°,∴AE是△ABE外接圓的直徑.
取AE的中點(diǎn)O,則O為圓心,連接OB、OD.
在△AOB和△AOD中,∵AB=AD,∠BAC=∠DAO,AO=AO,∴△AOB≌△AOD.∴OD=OB,∴點(diǎn)D在△ABE的外接圓上.
(2)直線CD與△ABE的外接圓相切.
理由:∵AB∥CD,∠B=90°.∴∠C=90°,∴∠CED+∠CDE=90°.
又∵OE=OD,∴∠ODE=∠OED.
又∠AED=∠CED,∴∠ODE=∠DEC,∴∠ODC=∠CDE+∠ODE=∠CDE+∠CED=90°,∴CD與△ABE的外接圓相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,,,點(diǎn)E在線段AB上,,點(diǎn)F在直線AD上,.
若,求的度數(shù);
找出圖中與相等的角,并說(shuō)明理由;
在的條件下,點(diǎn)不與點(diǎn)B、H重合從點(diǎn)B出發(fā),沿射線BG的方向移動(dòng),其他條件不變,請(qǐng)直接寫出的度數(shù)不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店需要購(gòu)進(jìn)甲、乙兩種商品共180件,其進(jìn)價(jià)和售價(jià)如表:(注:獲利=售價(jià)-進(jìn)價(jià))
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 14 | 35 |
售價(jià)(元/件) | 20 | 43 |
(1)若商店計(jì)劃銷售完這批商品后能獲利1240元,問(wèn)甲、乙兩種商品應(yīng)分別購(gòu)進(jìn)多少件?
(2)若商店計(jì)劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請(qǐng)問(wèn)有哪幾種購(gòu)貨方案?并直接寫出其中獲利最大的購(gòu)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,C(0,5)、D(a,5)(a>0),A、B在x軸上,∠1=∠D,請(qǐng)寫出∠ACB和∠BED數(shù)量關(guān)系以及證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC內(nèi)接于半徑為1的⊙O,以BC為一邊作⊙O的內(nèi)接矩形BCDE,求矩形BCDE的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上兩點(diǎn),經(jīng)過(guò)點(diǎn)A,C,B的拋物線的一部分C1與經(jīng)過(guò)點(diǎn)A,D,B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0, ),點(diǎn)M是拋物線C2:y=mx2-2mx-3m(m<0)的頂點(diǎn):
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)點(diǎn)A,C,B的拋物線C1的函數(shù)表達(dá)式.
(3)探究“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意一個(gè)三位數(shù),如果滿足各個(gè)數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個(gè)數(shù)為“相異數(shù)”,將一個(gè)“相異數(shù)”的各個(gè)數(shù)位上的數(shù)字之和記為. 例如時(shí),.
(1)對(duì)于“相異數(shù)”,若,請(qǐng)你寫出一個(gè)的值;
(2)若都是“相異數(shù)”,其中,(,都是正整數(shù)),規(guī)定:,當(dāng)時(shí),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按箭頭所示方向作折線運(yùn)動(dòng),即第一次從原點(diǎn)運(yùn)動(dòng)到(1,1),第二次從(1,1)運(yùn)動(dòng)到(2,0),第三次從(2,0)運(yùn)動(dòng)到(3,2),第四次從(3,2)運(yùn)動(dòng)到(4,0),第五次從(4,0)運(yùn)動(dòng)到(5,1),……,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過(guò)第2019次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,D是AC中點(diǎn),BE平分∠ABD交AC于點(diǎn)E,點(diǎn)O是AB上一點(diǎn),⊙O過(guò)B、E兩點(diǎn),交BD于點(diǎn)G,交AB于點(diǎn)F.
(1)判斷直線AC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)BD=6,AB=10時(shí),求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com