“已知(x2+3x-4)•(x2+3x-5)=6,求x2+3x的值”,在求解這個題目中,運用數(shù)學中的整體換元可以使問題變得簡單,具體方法如下:
解:設x2+3x=y,則原方程可變?yōu)椋?BR>(y-4)•(y-5)=6
整理得y2-9y+14=0
解得y1=2,y2=7
∴x2+3的值為2或7
請仿照上述解題方法,完成下列問題:
已知:(x2+y2-3)(2x2+2y2-4)=24,求x2+y2的值.
分析:設x2+y2=a,所求方程化為關(guān)于a的一元二次方程,求出方程的解得到a的值,即可確定出x2+y2的值.
解答:解:設x2+y2=a,所求方程化為(a-3)(2a-4)=24,
整理得:a2-5a-6=0,即(a-6)(a+1)=0,
解得:a=6或a=-1(不合題意,舍去),
則x2+y2=a=6.
點評:此題考查了換元法解一元二次方程,利用了整體代入的思想,注意求出值要檢驗.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:x2+3x+1=0,求x+
1x
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知方程x2-3x+2=0的兩根分別為x1、x2,則x1+x2-x1•x2的值為
1
1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知(x2-3x)2+5(x2-3x)-6=0,則代數(shù)式x2-3x的值為
-6或1
-6或1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:x2-3x=1,求下列各式的值.
(1)x2+
1x2

(2)x4-6x3+10x2-3x+6.

查看答案和解析>>

同步練習冊答案