精英家教網 > 初中數學 > 題目詳情

當x=-1時,下列代數式①1-x,②1-x2,③-2x,④1+x3中值為零的有


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個
B
分析:此題可將當x=-1代入各個代數式中并計算其值與0比較,看有幾個結果為零.
解答:①1-x=2;
②1-x2=0;
③-2x=2;
④1+x3=0.
故選B.
點評:此題考查的是代數式的性質,通過把值代入分別求出代數式的值然后比較.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

精英家教網閱讀理解
九年級一班數學學習興趣小組在解決下列問題中,發(fā)現該類問題不僅可以應用“三角形相似”知識解決問題,還可以“建立直角坐標系、應用一次函數”解決問題.
請先閱讀下列“建立直角坐標系、應用一次函數”解決問題的方法,然后再應用此方法解決后續(xù)問題.
問題:如圖(1),直立在點D處的標桿CD長3m,站立在點F處的觀察者從點E處看到標桿頂C、旗桿頂A在一條直線上.已知BD=15m,FD=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標系,則線段AE可看作一個一次函數的圖象.
由題意可得各點坐標為:點E(0,1.6),C(2,3),B(17,0),且所求的高度就為點A的縱坐標.
設直線AE的函數關系式為y=kx+b.
把E(0,1.6),C(2,3)代入得
b=1.6
2k+b=3.
解得
k=0.7
b=1.6.
精英家教網
∴y=0.7x+1.6.
∴當x=17時,y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問題
請應用上述方法解決下列問題:
如圖(3),河對岸有一路燈桿AB,在燈光下,小明在點D處測得自己的影長DF=3m,BD=9m,沿BD方向到達點F處再測得自己的影長FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>

科目:初中數學 來源: 題型:

根據一元二次方程根的定義,解答下列問題.
一個三角形兩邊長分別為3cm和7cm,第三邊長為a cm,且整數a滿足a2-10a+21=0,求三角形的周長.
解:由已知可得4<a<10,則a可取5,6,7,8,9.(第一步)
當a=5時,代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.
同理可知a=6,a=8,a=9都不是方程的根.
∴a=7是方程的根.(第二步)
∴△ABC的周長是3+7+7=17(cm).
上述過程中,第一步是根據
三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊
三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊
,第二步應用了
分類討論
分類討論
數學思想,確定a的值的大小是根據
方程根的定義
方程根的定義

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:兩個正整數的和與積相等,求這兩個正整數.
解:設這兩個正整數為a、b,且a≤b.
由題意,得ab=a+b,…(*)
則ab=a+b≤b+b=2b,即ab≤2b,所以a≤2.
因為a為正整數,所以a=1或2.
①當a=1時,代入等式(*),得1•b=1+b,b不存在;
②當a=2時,代入等式(*),得2•b=2+b,b=2.
所以這兩個正整數為2和2.
仿照以上閱讀材料的解法解答下列問題:
已知:三個正整數的和與積相等,求這三個正整數.

查看答案和解析>>

科目:初中數學 來源:2011年江蘇省南京市溧水縣中考數學二模試卷(解析版) 題型:解答題

閱讀理解
九年級一班數學學習興趣小組在解決下列問題中,發(fā)現該類問題不僅可以應用“三角形相似”知識解決問題,還可以“建立直角坐標系、應用一次函數”解決問題.
請先閱讀下列“建立直角坐標系、應用一次函數”解決問題的方法,然后再應用此方法解決后續(xù)問題.
問題:如圖(1),直立在點D處的標桿CD長3m,站立在點F處的觀察者從點E處看到標桿頂C、旗桿頂A在一條直線上.已知BD=15m,FD=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標系,則線段AE可看作一個一次函數的圖象.
由題意可得各點坐標為:點E(0,1.6),C(2,3),B(17,0),且所求的高度就為點A的縱坐標.
設直線AE的函數關系式為y=kx+b.
把E(0,1.6),C(2,3)代入得解得
∴y=0.7x+1.6.
∴當x=17時,y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問題
請應用上述方法解決下列問題:
如圖(3),河對岸有一路燈桿AB,在燈光下,小明在點D處測得自己的影長DF=3m,BD=9m,沿BD方向到達點F處再測得自己的影長FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:兩個正整數的和與積相等,求這兩個正整數.
解:設這兩個正整數為a、b,且a≤b.
由題意,得ab=a+b,…(*)
則ab=a+b≤b+b=2b,即ab≤2b,所以a≤2.
因為a為正整數,所以a=1或2.
①當a=1時,代入等式(*),得1•b=1+b,b不存在;
②當a=2時,代入等式(*),得2•b=2+b,b=2.
所以這兩個正整數為2和2.
仿照以上閱讀材料的解法解答下列問題:
已知:三個正整數的和與積相等,求這三個正整數.

查看答案和解析>>

同步練習冊答案