【題目】如圖,在△ABC中,AB=BC=2,以AB為直徑的⊙O分別交BC,AC于點D,E,且點D是BC的中點.
(1)求證:△ABC為等邊三角形.
(2)求DE的長.
【答案】(1)詳見解析;(2)DE=1.
【解析】
(1)連接AD,利用直徑所對的圓周角為直角及垂直平分線的性質(zhì)得到相等的線段AB=AC,聯(lián)立已知的AB=BC,即可證得△ABC是等邊三角形;
(2)連接BE,利用直徑所對的圓周角為直角,得到BE⊥AC,然后利用等腰三角形三線合一的性質(zhì)得出E為AC的中點,繼而利用三角形中位線的數(shù)量關(guān)系求得DE的長度.
(1)連接AD.
∵AB是⊙O的直徑,∴∠ADB=90°.
∵點D是BC的中點,∴AD是線段BC的垂直平分線,∴AB=AC.
∵AB=BC,∴AB=BC=AC,∴△ABC為等邊三角形.
(2)連接BE.
∵AB是直徑,∴∠AEB=90°,∴BE⊥AC.
∵△ABC是等邊三角形,∴AE=EC,即E為AC的中點.
∵D是BC的中點,∴DE為△ABC的中位線,∴DE=AB=×2=1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABE中,∠B=90°,以AB為直徑的⊙O交AE于點C,CE的垂直平分線FD交BE于D,連接CD.
(1)判斷CD與⊙O的位置關(guān)系,并證明;
(2)若AC·AE=12,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,科技小組準備用材料圍建一個面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12m。設(shè)AD的長為xm,DC的長為ym。
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和DC的長都是整米數(shù),求出滿足條件的所有圍建方案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進價為每件30元,售價為每件40元,每周可賣出180件;如果每件商品的售價每上漲1元,則每周就會少賣出5件,但每件售價不能高于50元,設(shè)每件商品的售價上漲x元(x為整數(shù)),每周的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)每件商品的售價為多少元時,每周可獲得最大利潤?最大利潤是多少?
(3)每件商品的售價定為多少元時,每周的利潤恰好是2145元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、F分別在邊AB、BC上,∠ADE=∠CDF.
(1)求證:AE=CF;
(2)連結(jié)DB交EF于點O,延長OB至點G,使OG=OD,連結(jié)EG、FG,判斷四邊形DEGF是否是菱形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某工廠要選一塊矩形鐵皮加工成一個底面半徑為20 cm,高為cm的圓錐形漏斗,要求只能有一條接縫(接縫忽略不計),請問:選長、寬分別為多少厘米的矩形鐵皮,才能使所用材料最?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BC及AB的延長線相交于點D,E,F,且BF=BC.⊙O是△BEF的外接圓,連結(jié)BD.
(1)求證:△ABC≌△EBF;
(2)試判斷BD與⊙O的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是關(guān)于x的一元二次方程4kx2-4kx+k+1=0的兩個實數(shù)根,是否存在實數(shù)k,使(2x1-x2)(x1-2x2)=-成立?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑AE=10cm,∠B=∠EAC,則AC的長為( 。
A. 5cm B. 5cm C. 5 cm D. 6cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com