(2013•歷下區(qū)一模)如圖,設(shè)直線l2:y=-2x+8與x軸相交于點(diǎn)N,與直線l1相交于點(diǎn)E(1,a),雙曲線y=
k
x
(x>0)經(jīng)過點(diǎn)E,且與直線l1相交于另一點(diǎn)F(9,
2
3
).
(1)求雙曲線解析式及直線l1的解析式;
(2)點(diǎn)P在直線l1上,過點(diǎn)F向y軸作垂線,垂足為點(diǎn)B,交直線l2于點(diǎn)H,過點(diǎn)P向x軸作垂線,垂足為點(diǎn)D,與FB交于點(diǎn)C.
①請(qǐng)直接寫出當(dāng)線段PH與線段PN的差最大時(shí)點(diǎn)P的坐標(biāo);
②當(dāng)以P、B、C三點(diǎn)為頂點(diǎn)的三角形與△AMO相似時(shí),求點(diǎn)P的坐標(biāo).
分析:(1)把點(diǎn)F的坐標(biāo)代入反比例函數(shù)解析式求得k的值;然后把點(diǎn)E的坐標(biāo)代入雙曲線解析式可以求得a的值;然后根據(jù)點(diǎn)E、F的坐標(biāo)來求直線l1的解析式;
(2)①當(dāng)點(diǎn)P、H、N共線時(shí),線段PH與線段PN的差最大;
②需要分類討論:△PBC∽△AMO和△PBC∽△MAO兩種情況,由相似三角形的對(duì)應(yīng)邊成比例可以求得點(diǎn)P的坐標(biāo).
解答:解:(1)∵雙曲線y=
k
x
(x>0)經(jīng)過點(diǎn)E(1,a)和點(diǎn)F(9,
2
3
),
a=k
2
3
=
k
9
,
解得
a=6
k=6
,
∴雙曲線的解析為:y=
6
x
,點(diǎn)E(1,6).
設(shè)直線l1的解析式為y=kx+b(k≠0).
把點(diǎn)E、F的坐標(biāo)分別代入,得
k+b=6
9k+b=
2
3
,
解得
k=-
2
3
b=
20
3
,
則直線l1的解析式為y=-
2
3
x+
20
3
;
綜上所述,雙曲線解析式及直線l1的解析式分別是:y=
6
x
和y=-
2
3
x+
20
3


(2)①當(dāng)點(diǎn)P、H、N共線時(shí),線段PH與線段PN的差最大,此時(shí),點(diǎn)P與點(diǎn)E重合,即P(1,6);
②設(shè)P(x,y)(x>0).
∵直線l1的解析式為y=-
2
3
x+
20
3

∴AO=
20
3
,OM=10,
∴如圖,在直角△AOM中,由勾股定理得到:AM=
OA2+OM2
=
(
20
3
)2+102
=
10
13
3

易求PC=-
2
3
x+
18
3

i)當(dāng)△PBC∽△AMO時(shí),
BC
MO
=
PC
AO
,即
x
10
=
-
2
3
x+
18
3
20
3
,解得x=
9
2
,則y=-
2
3
×
9
2
+
20
3
=
11
3
,故P(
9
2
,
11
3
);
ii)當(dāng)△PBC∽△MAO時(shí),
BC
AO
=
PC
MO
,即
x
20
3
=
-
2
3
x+
18
3
10
,解得x=
36
13
,則y=-
2
3
×
36
13
+
20
3
=
188
39
,故P(
36
13
,
188
39
).
綜上所述,符合條件的點(diǎn)P的坐標(biāo)是P(
9
2
,
11
3
)或(
36
13
,
188
39
).
點(diǎn)評(píng):本題考查了待定系數(shù)法求一次函數(shù)、反比例函數(shù)的解析式,相似三角形的性質(zhì).注意,解(2)題時(shí),沒有明確相似三角形的對(duì)應(yīng)角(邊),一定要分類討論,考慮到所有的情況,不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•歷下區(qū)一模)如圖,在矩形ABCD中,AB=
3
,BC=1.現(xiàn)將矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到矩形A′B′CD′,則AD邊掃過的面積(陰影部分)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•歷下區(qū)一模)已知:如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)點(diǎn)Q、E同時(shí)從B點(diǎn)出發(fā),點(diǎn)E以每秒1個(gè)單位的速度沿線段BC向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q以每秒2個(gè)單位的速度沿線段BA向點(diǎn)A運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也停止運(yùn)動(dòng),連接CQ、EQ,求△CQE的最大面積;
(3)若平行于x軸的動(dòng)直線l與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0),問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)簡(jiǎn)明說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•歷下區(qū)二模)某種紙一張的厚度為0.008905cm,將其保留三個(gè)有效數(shù)字用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•歷下區(qū)二模)列方程(組)解應(yīng)用題:
夏季里某一天,離供電局30千米遠(yuǎn)的郊區(qū)發(fā)生供電故障,搶修隊(duì)接到通知后,立即前去搶修.維修工騎摩托車先走,15分鐘后,搶修車裝載著所需材料出發(fā),結(jié)果兩車同時(shí)到達(dá)搶修點(diǎn).已知搶修車的速度是摩托車速度的1.5倍,求這兩種車的速度.

查看答案和解析>>

同步練習(xí)冊(cè)答案