【題目】如圖,,,.點(diǎn)從開始沿邊向點(diǎn)以的速度移動,與此同時,點(diǎn)從點(diǎn)開始沿邊向點(diǎn)以的速度移動.如果、分別從、同時出發(fā),當(dāng)點(diǎn)運(yùn)動到點(diǎn)時,兩點(diǎn)停止運(yùn)動,問:
經(jīng)過幾秒,的面積等于?
(2)的面積會等于嗎?若會,請求出此時的運(yùn)動時間;若不會,請說明理由.
【答案】經(jīng)過秒或秒,的面積等于;的面積不會等于.
【解析】
(1)設(shè)經(jīng)過x秒,的面積等于.先用含x的代數(shù)式分別表示BP和BQ的長度,再代入三角形面積公式,列出方程,即可將時間求出;
(2)設(shè)經(jīng)過y秒,的面積等于.根據(jù)三角形的面積公式,列出關(guān)于y的一元二次方程,根據(jù)進(jìn)行判斷.
設(shè)經(jīng)過秒,的面積等于.
∵,,
∴,
∴,
∴,
解得:或,
即經(jīng)過秒或秒,的面積等于;
設(shè)經(jīng)過秒,的面積等于,
則,
即,
因?yàn)?/span>,
所以的面積不會等于.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是二次函數(shù)圖象的一部分,圖象過點(diǎn),二次函數(shù)圖象對稱軸為直線,給出五個結(jié)論:①;②;③當(dāng)時,隨的增大而增大;④方程的根為,;⑤其中正確結(jié)論是( )
A. ①②③ B. ①③④ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】青海新聞網(wǎng)訊:2016年2月21日,西寧市首條綠道免費(fèi)公共自行車租賃系統(tǒng)正式啟用.市政府今年投資了112萬元,建成40個公共自行車站點(diǎn)、配置720輛公共自行車.今后將逐年增加投資,用于建設(shè)新站點(diǎn)、配置公共自行車.預(yù)計(jì)2018年將投資340.5萬元,新建120個公共自行車站點(diǎn)、配置2205輛公共自行車.
(1)請問每個站點(diǎn)的造價和公共自行車的單價分別是多少萬元?
(2)請你求出2016年到2018年市政府配置公共自行車數(shù)量的年平均增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】銷售某種商品,根據(jù)經(jīng)驗(yàn),銷售單價不少于30元 /件,但不超過50元 /件時,銷售數(shù)量N (件)與商品單價M (元 /件)的函數(shù)關(guān)系的圖象如圖所示中的線段AB.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)如果計(jì)劃每天的銷售額為2400元時,那么該商品的單價應(yīng)該定多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△C;平移△ABC,若A的對應(yīng)點(diǎn)的坐標(biāo)為(0,4),畫出平移后對應(yīng)的△;
(2)若將△C繞某一點(diǎn)旋轉(zhuǎn)可以得到△,請直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(3)在軸上有一點(diǎn)P,使得PA+PB的值最小,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線 y=x2+mx+n 過點(diǎn)(-1,8)和點(diǎn)(4,3)且與 x 軸交于 A,B 兩點(diǎn), 與 y 軸交于點(diǎn) C
(1)求拋物線的解析式;
(2)如圖1,AD 交拋物線于 D,交直線 BC 于點(diǎn) G,且 AG=GD,求點(diǎn) D 的坐標(biāo);
(3)如圖2,過點(diǎn) M(3,2)的直線交拋物線于 P,Q,AP 交 y 軸于點(diǎn) E,AQ 交y 軸于點(diǎn) F,求OE·OF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖16,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.
(1)求拋物線的解析式.
(2)若點(diǎn)D是線段AC下方拋物線上的動點(diǎn),求四邊形ABCD面積的最大值.
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,點(diǎn)E、F是BC、CD的中點(diǎn),且AE⊥BC,AF⊥CD.
(1)求證:AB=AD.
(2)請你探究∠EAF,∠BAE,∠DAF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com