【題目】如圖,將直角三角形ABC沿著斜邊AC的方向平移到△DEF的位置(A、D. C. F四點在同一條直線上).直角邊DEBC于點G.如果BG=4,EF=12,BEG的面積等于4,那么梯形ABGD的面積是( )

A.16B.20C.24D.28

【答案】B

【解析】

通過圖可知梯形ABGD的面積=ABC的面積-CDG的面積=DEF的面積-CDG的面積=梯形EGCF的面積.

∵△DEF的是直角三角形ABC沿著斜邊AC的方向平移后得到的,且A. D. C. F四點在同一條直線上,

BEACBC=EF,

BG=4EF=12,

CG=BCBG=EFBG=124=8.

∵△BEG的面積等于4

BGGE=4,

GE=2,

∴梯形EGCF的面積= (CG+EF)GE= (8+12)×2=20

∴梯形ABGD的面積=梯形EGCF的面積=20.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,.若動點從點開始,沿的路徑運動,且速度為每秒,設(shè)運動的時間為秒,當______時,為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtOAB的直角邊OAx軸上,頂點B的坐標為(6,8),直線CDAB于點D(6,3),交x軸于點C(12,0).

(1)求直線CD的函數(shù)表達式;

(2)動點Px軸上從點(﹣10,0)出發(fā),以每秒1個單位的速度向x軸正方向運動,過點P作直線l垂直于x軸,設(shè)運動時間為t.

①點P在運動過程中,是否存在某個位置,使得∠PDA=B?若存在,請求出點P的坐標;若不存在,請說明理由;

②請?zhí)剿鳟?/span>t為何值時,在直線l上存在點M,在直線CD上存在點Q,使得以OB為一邊,O,B,M,Q為頂點的四邊形為菱形,并求出此時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AMCN,點B為平面內(nèi)一點,ABBCB.

(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系___;

(2)如圖2,過點BBDAM于點D,求證:∠ABD=C

(3)如圖3,(2)問的條件下,E. FDM,連接BE、BFCF,BF平分∠DBC,BE平分∠ABD,若∠FCB+NCF=180°,∠BFC=3DBE,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點DE分別在AC,AB上.

1(1) 已知,BD=CE,CD=BE,求證:AB=AC;

2(2) 分別將“BD=CE”記為,“CD=BE” 記為,“AB=AC”記為.添加條件、,以為結(jié)論構(gòu)成命題1,添加條件為結(jié)論構(gòu)成命題2.命題1是命題2 命題,命題2

命題.(選擇填入空格).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班要在一面墻上同時展示數(shù)張形狀、大小均相同的矩形繪畫作品,將這些作品排成一個矩形(作品不完全重合),現(xiàn)需要在每張作品的四個角落都釘上圖釘,如果作品有角落相鄰,那么相鄰的角落共享一枚圖釘(例如,用9枚圖釘將4張作品釘在墻上,如圖),若有34枚圖釘可供選用,則最多可以展示繪畫作品( )

A. 16 B. 18 C. 20 D. 21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏思考解決如下問題:

原題:如圖1,點分別在菱形的邊,上,,求證:.

(1)小敏進行探索,若將點,的位置特殊化:把繞點旋轉(zhuǎn)得到,使,點,分別在邊,上,如圖2,此時她證明了.請你證明.

(2)受以上(1)的啟發(fā),在原題中,添加輔助線:如圖3,作,,垂足分別為,.請你繼續(xù)完成原題的證明.

(3)如果在原題中添加條件:,,如圖1.請你編制一個計算題(不標注新的字母),并直接給出答案(根據(jù)編出的問題層次,給不同的得分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件:A+B=CC=90°,ACBCAB=345,A:∠B:∠C=345a2=(b+c)(bc)中,能確定△ABC是直角三角形的有(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD的邊AB上任取一點E,作EFABBD于點F,取FD的中點G,連結(jié)EG、CG.

(1)如圖1,求證EG=CGEGCG.

(2)如圖2BEF繞點B逆時針旋轉(zhuǎn)90度,求線段EGCG有怎么樣的關(guān)系,并證明你的結(jié)論.

(3)如圖3,BEF繞點B逆時針旋轉(zhuǎn)180度,線段EGCG有怎么樣的關(guān)系?寫出你的猜想,不需證明.

查看答案和解析>>

同步練習(xí)冊答案