精英家教網 > 初中數學 > 題目詳情
(2008•懷化)如圖,四邊形ABCD、DEFG都是正方形,連接AE、CG,AE與CG相交于點M,CG與AD相交于點N.
求證:(1)AE=CG;(2)AN•DN=CN•MN.

【答案】分析:(1)要證明AE=CG,只要證得三角形ADE和三角形CDG全等即可,根據題中的已知條件我們不難得出,AD=CD,GC=AE,∠ADE和∠GDC,又同為90°+∠ADC,那么就構成了全等三角形的判定中SAS的條件.
(2)本題可通過證明三角形AMN和三角形CDN相似來證得.
解答:證明:(1)∵四邊形ABCD和四邊形DEFG都是正方形,
∴AD=CD,DE=DG,∠ADC=∠EDG=90°,
∵∠ADE=90°+∠ADG,∠CDG=90°+∠ADG,
∴∠ADE=∠CDG,
在△ADE和△CDG中

∴△ADE≌△CDG(SAS),
∴AE=CG.

(2)由(1)得△ADE≌△CDG,
則∠DAE=∠DCG,
又∵∠ANM=∠CND,
∴△AMN∽△CDN,
,
即AN•DN=CN•MN.
點評:求某兩條線段相等,可通過證明它們所在的三角形全等來實現.要證明某些線段成比例,可通過證明這些相關聯的線段所在的三角形相似來得出所求的條件.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年山東省濟南市歷下區(qū)中考數學三模試卷(解析版) 題型:解答題

(2008•懷化)如圖所示,在平面直角坐標系中,⊙M經過原點O,且與x軸、y軸分別相交于A(-6,0),B(0,-8)兩點.
(1)請求出直線AB的函數表達式;
(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在⊙M上,開口向下,且經過點B,求此拋物線的函數表達式;
(3)設(2)中的拋物線交x軸于D,E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年湖北省宜昌市枝江市雅畈中學九年級中考數學強化訓練專題3 二次函數(解析版) 題型:解答題

(2008•懷化)如圖所示,在平面直角坐標系中,⊙M經過原點O,且與x軸、y軸分別相交于A(-6,0),B(0,-8)兩點.
(1)請求出直線AB的函數表達式;
(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在⊙M上,開口向下,且經過點B,求此拋物線的函數表達式;
(3)設(2)中的拋物線交x軸于D,E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年江蘇省連云港市中考數學原創(chuàng)試卷大賽(31)(解析版) 題型:解答題

(2008•懷化)如圖,已知正比例函數y=x與反比例函數y=的圖象交于A、B兩點.
(1)求出A、B兩點的坐標;
(2)根據圖象求使正比例函數值大于反比例函數值的x的范圍.

查看答案和解析>>

科目:初中數學 來源:2009年廣東省湛江市初中畢業(yè)水平模擬考試數學試卷(解析版) 題型:解答題

(2008•懷化)如圖所示,在平面直角坐標系中,⊙M經過原點O,且與x軸、y軸分別相交于A(-6,0),B(0,-8)兩點.
(1)請求出直線AB的函數表達式;
(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在⊙M上,開口向下,且經過點B,求此拋物線的函數表達式;
(3)設(2)中的拋物線交x軸于D,E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年湖南省懷化市中考數學試卷(解析版) 題型:解答題

(2008•懷化)如圖,已知正比例函數y=x與反比例函數y=的圖象交于A、B兩點.
(1)求出A、B兩點的坐標;
(2)根據圖象求使正比例函數值大于反比例函數值的x的范圍.

查看答案和解析>>

同步練習冊答案