【題目】方程x2﹣9=0的根為( )
A.3
B.﹣3
C.±3
D.無(wú)實(shí)數(shù)根

【答案】C
【解析】 解:x2=9,
x=±3.
所以x1=3,x2=﹣3.
故選C.
【考點(diǎn)精析】利用直接開(kāi)平方法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知方程沒(méi)有一次項(xiàng),直接開(kāi)方最理想.如果缺少常數(shù)項(xiàng),因式分解沒(méi)商量.b、c相等都為零,等根是零不要忘.b、c同時(shí)不為零,因式分解或配方,也可直接套公式,因題而異擇良方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,∠1+∠2+∠3+∠4等于(
A.180°
B.360°
C.240°
D.540°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中裝有除顏色外完全相同的2個(gè)紅球和1個(gè)綠球.

(1)現(xiàn)從袋中摸出1個(gè)球后放回,混合均勻后再摸出1個(gè)球.請(qǐng)用畫樹(shù)狀圖或列表的方法,求第一次摸到綠球,第二次摸到紅球的概率;

(2)先從袋中摸出1個(gè)球后不放回,再摸出1個(gè)球,則兩次摸到的球中有1個(gè)綠球和1個(gè)紅球的概率是多少?請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為200元,170元的A、B聯(lián)眾型號(hào)的電風(fēng)扇,表中是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

5臺(tái)

1800元

第二周

4臺(tái)

10臺(tái)

3100元

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);
(2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算與解方程
(1)計(jì)算: × ﹣|﹣ |
(2)若(x﹣2)2=9,求x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解方程x2﹣2x﹣5=0時(shí),原方程應(yīng)變形為( )
A.(x+1)2=6
B.(x﹣1)2=6
C.(x+2)2=9
D.(x﹣2)2=9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙O的切線,切點(diǎn)為D,AB經(jīng)過(guò)圓心O并與圓相交于點(diǎn)E,連接AD

(1)求證:AD平分∠BAC;

(2)若AC=8,tanDAC=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b是一元二次方程x2+x40的兩個(gè)不相等的實(shí)數(shù)根,則a2b_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若“★”是新規(guī)定的某種運(yùn)算符號(hào),設(shè)a★b=ab+a﹣b,則2★n=﹣8,則n=

查看答案和解析>>

同步練習(xí)冊(cè)答案