【題目】已知二次函數(shù)y=x2+2x﹣1.
(1)寫(xiě)出它的頂點(diǎn)坐標(biāo);
(2)當(dāng)x取何值時(shí),y隨x的增大而增大;
(3)當(dāng)x取何值時(shí)y的值大于0.
【答案】(1)頂點(diǎn)坐標(biāo)為:(﹣1,﹣2);(2)x>﹣1;(3)x<﹣1﹣或x>﹣1+
【解析】
(1)先配方得到頂點(diǎn)式y=(x+1)2﹣2,于是得到拋物線的頂點(diǎn)坐標(biāo)為(﹣1,﹣2);
(2)由于拋物線的對(duì)稱軸為直線x=﹣1,開(kāi)口向上,根據(jù)二次函數(shù)的性質(zhì)得當(dāng)x>﹣1時(shí),y隨x的增大而增大;
(3)拋物線的開(kāi)口向上,求出拋物線與x軸的交點(diǎn)坐標(biāo),找出拋物線在x軸上方所對(duì)應(yīng)的自變量的取值范圍即可
解:(1)y=x2+2x﹣1=(x+1)2﹣2,
∴頂點(diǎn)坐標(biāo)為:(﹣1,﹣2);
(2)∵y=x2+2x﹣1=(x+1)2﹣2的對(duì)稱軸為:x=﹣1,開(kāi)口向上,
∴當(dāng)x>﹣1時(shí),y隨x的增大而增大;
(3)∵拋物線的開(kāi)口向上,與x軸的交點(diǎn)坐標(biāo)為(﹣1﹣,0),(﹣1+,0),
∴當(dāng)x<﹣1﹣或x>﹣1+時(shí),y>0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+x﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過(guò)A,C兩點(diǎn),連接BC.
(1)求直線l的解析式;
(2)若直線x=m(m<0)與該拋物線在第三象限內(nèi)交于點(diǎn)E,與直線l交于點(diǎn)D,連接OD.當(dāng)OD⊥AC時(shí),求線段DE的長(zhǎng);
(3)取點(diǎn)G(0,﹣1),連接AG,在第一象限內(nèi)的拋物線上,是否存在點(diǎn)P,使∠BAP=∠BCO﹣∠BAG?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),直線AC與過(guò)B點(diǎn)的切線相交于D,點(diǎn)E是BD的中點(diǎn),直線CE交直線AB于點(diǎn)F.
(1)求證:CF是⊙O的切線;
(2)若ED=3,EF=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=DQ,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)E是上的一點(diǎn),∠DBC=∠BED.
(1)求證:BC是⊙O的切線;
(2)已知AD=3,CD=2,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,二次函數(shù)y=x2﹣2x﹣3的部分圖象與x軸交于點(diǎn)A、
B(A在B的左邊),與y軸交于點(diǎn)C,連接BC,D為頂點(diǎn).
(1)求∠OBC的度數(shù);
(2)在x軸下方的拋物線上是否存在一點(diǎn)Q,使△ABQ的面積等于5?如存在,求Q點(diǎn)的坐標(biāo),如不存在,說(shuō)明理由;
(3)點(diǎn)P是第四象限的拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)D重合),過(guò)點(diǎn)P作PF⊥x軸交BC于點(diǎn)F,求線段PF長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】位于河南省鄭州市的炎黃二帝巨型塑像,是為代表中華民族之創(chuàng)始、之和諧、之統(tǒng)一.塑像由山體CD和頭像AD兩部分組成.某數(shù)學(xué)興趣小組在塑像前50米處的B處測(cè)得山體D處的仰角為45°,頭像A處的仰角為70.5°,求頭像AD的高度.(最后結(jié)果精確到0.1米,參考數(shù)據(jù):sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+mx﹣2m﹣4(m>0).
(1)證明:該拋物線與x軸總有兩個(gè)不同的交點(diǎn);
(2)設(shè)該拋物線與x軸的兩個(gè)交點(diǎn)分別為A,B(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C,A,B,C三點(diǎn)都在⊙P上.
①試判斷:不論m取任何正數(shù),⊙P是否經(jīng)過(guò)y軸上某個(gè)定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由;
②若點(diǎn)C關(guān)于直線x的對(duì)稱點(diǎn)為點(diǎn)E,點(diǎn)D(0,1),連接BE,BD,DE,△BDE的周長(zhǎng)記為l,⊙P的半徑記為r,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).對(duì)稱軸為直線,點(diǎn)在拋物線上.
(1)求直線的解析式;
(2)為直線下方拋物線上的一點(diǎn),連接、.當(dāng)的面積最大時(shí),在直線上取一點(diǎn),過(guò)作軸的垂線,垂足為點(diǎn),連接、.若時(shí),求的值;
(3)將拋物線沿軸正方向平移得到新拋物線,經(jīng)過(guò)原點(diǎn).與軸的另一個(gè)交點(diǎn)為.設(shè)是拋物線上任意一點(diǎn),點(diǎn)在直線上,能否成為以點(diǎn)為直角頂點(diǎn)的等腰直角三角形?若能,直接寫(xiě)出點(diǎn)的坐標(biāo).若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com