精英家教網 > 初中數學 > 題目詳情

【題目】我們把的圓心角所對的弧叫做的弧.由此可知:命題圓周角的度數等于其所對的弧的度數的一半.”是真命題,已知,的度數為,的度數為.

(1)如圖1,⊙O的兩條弦AB、CD相交于圓內一點P,求證:;

(2)如圖2,⊙O的兩條弦AB、CD延長線相交于圓外一點P.問題(1)中的結論是否成立?如果成立,給予證明;如果不成立,寫出一個類似的結論,并證明.

【答案】1)見解析;(2)問題(1)中的結論不成立,圖2的結論為,理由見解析.

【解析】

1)連接BC,由題意可知∠B=,∠C=,再由三角形的外角性質即可得證;

2)連接BC,同理可得∠ABC=,∠C=,再由三角形的外角性質可得結論.

證明:(1)連接BC,如下圖所示,

∵∠B所對的圓周角,∠C所對的圓周角,

∴∠B=,∠C=

∵∠APC是△BCP的外角,

∴∠APC=B+C=

2)問題(1)中的結論不成立,圖2的結論為,理由如下:

連接BC,如下圖所示,

同理可得∠ABC=,∠C=,

∵∠ABC是△BCP的外角,

∴∠ABC=APC+C,

∴∠APC=ABC-C=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】水果店張阿姨以每斤4元的價格購進某種水果若干斤,然后以每斤6元的價格出售,每天可售出150斤,通過調查發(fā)現,這種水果每斤的售價每降低0.1元,每天可多售出30斤,為保證每天至少售出360斤,張阿姨決定降價銷售.

(1)若將這種水果每斤的售價降低x元,則每天的銷售量是   斤(用含x的代數式表示);

(2)銷售這種水果要想每天盈利450元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,點IABC的內心,∠AIC=124°,點EAD的延長線上,則∠CDE的度數為( 。

A. 56° B. 62° C. 68° D. 78°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F是AB上的一個動點(F不與A,B重合),過點F的反比例函數y= (x>0)的圖象與BC邊交于點E.

(1)當F為AB的中點時,求該函數的解析式;

(2)當k為何值時,△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】施工隊要修建一個橫斷面為拋物線的公路隧道,其高度為6米,寬度OM12米,現在O點為原點,OM所在直線為x軸建立直角坐標系(如圖所示).

1)直接寫出點M及拋物線頂點P的坐標;

2)求出這條拋物線的函數解析式;

3)施工隊計劃在隧道門口搭建一個矩形腳手架”ABCD,使A、D點在拋物線上,B、C點在地面OM上.為了籌備材料,需求出腳手架三根木桿AB、AD、DC的長度之和的最大值是多少?請你幫施工隊計算一下.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數的圖像與軸交于兩點,與軸交于點,其頂點為,連接,過點軸的垂線.

1)求點的坐標;

2)直線上是否存在點,使的面積等于的面積的3倍?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于鈍角α,定義它的三角函數值如下:

sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)

(1)求sin120°,cos120°,sin150°的值;

(2)若一個三角形的三個內角的比是1:1:4,A,B是這個三角形的兩個頂點,sinA,cosB是方程4x2﹣mx﹣1=0的兩個不相等的實數根,求m的值及A和B的大小.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某汽車銷售公司11月份銷售某廠家的汽車,在一定范圍內,每部汽車的進價與銷售量有如下關系:若當月僅售出部汽車,則該部汽車的進價為萬元,每多售出部,所有售出的汽車的進價均降低萬元/.月底廠家再根據銷售量返利給銷售公司:銷售量在部以內(),每部返利萬元;銷售量在部以上,每部返利萬元.

(1)若該公司當月售出部汽車,則每部汽車的進價為 萬元;

(2)若汽車的售價為萬元/部,該公司計劃當月盈利萬元,則需售出多少部汽車? (盈利=銷售利潤+返利)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(9)已知:ABCD的兩邊AB,AD的長是關于x的方程的兩個實數根.

1)當m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

2)若AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

同步練習冊答案