【題目】已知:如圖,OC是∠AOB的平分線.

1)當(dāng)∠AOB = 60°時,求∠AOC的度數(shù);

2)在(1)的條件下,過點OOEOC,補全圖形,并求∠AOE的度數(shù);

3)當(dāng)∠AOB =時,過點OOEOC,直接寫出∠AOE的度數(shù)(用含代數(shù)式表示).

【答案】130°;(2120°或60°;(3 ;.

【解析】

1)直接由角平分線的意義得出答案即可;

2)分兩種情況:OEOC的上面,OEOC的下面,利用角的和與差求得答案即可;

3)類比(2)中的答案得出結(jié)論即可.

1)∵OC是∠AOB的平分線(,

∴∠AOCAOB

∵∠AOB=60°,

∴∠AOC=30°.

2)∵OEOC,

∴∠EOC=90°,

如圖1

AOE=COE+COA=90°+30°=120°.

如圖2,

AOE=COE﹣∠COA=90°﹣30°=60°.

3)同(2)可得:∠AOE=90°α或∠AOE=90°α

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校七年級男生的體能情況,體育老師隨即抽取部分男生進(jìn)行引體向上測試,并對成績進(jìn)行了統(tǒng)計,繪制成圖1和圖2尚不完整的統(tǒng)計圖。

1)本次抽測的男生有 人;

2)請你將圖1的統(tǒng)計圖補充完整;

3)若規(guī)定引體向上5次以上(5)為體能達(dá)標(biāo),則該校350名九年級男生中,估計有多少人體能達(dá)標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們在“堆石子”游戲中發(fā)現(xiàn):像圖(1)中的這些數(shù)據(jù)能夠表示成正方形,可將其稱為正方形數(shù);類似地,像圖(2)中的這些數(shù)據(jù)能夠表示成三角形,可將其稱為三角形數(shù).

1)第個正方形數(shù)是 ;第個正方形數(shù)是

2)第個三角形數(shù)是 ;第個三角形數(shù)是 ;

3)若將一堆小石子按一定規(guī)律擺成下列圖形,請求出第個圖形中“●”的個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

如圖,拋物線y=x2x4x軸交與AB兩點(點B在點A的右側(cè)),與y軸交于點C,連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點Px軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點Px軸的垂線l交拋物線于點Q

1)求點A,B,C的坐標(biāo).

2)當(dāng)點P在線段OB上運動時,直線l分別交BD,BC于點MN.試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由.

3)當(dāng)點P在線段EB上運動時,是否存在點Q,使BDQ為直角三角形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在同一平面內(nèi)有三點A、B、C

1)作射線CA,連接BC;

2)延長線段BC,得到射線CD,畫∠ACD平分線CE;

3)在射線CD上取一點F,使得CF = AC;

4)在射線CE上作一點P,使PF + PA最;

5)第(4)步作圖的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②當(dāng)x≥1時,yx的增大而減;③2a+b=0;b2﹣4ac>0;,其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為實施鄉(xiāng)村振興戰(zhàn)略,解決某山區(qū)老百姓出行難的問題,當(dāng)?shù)卣疀Q定修建一條高速公路.其中一段長為146米的山體隧道貫穿工程由甲乙兩個工程隊負(fù)責(zé)施工.甲工程隊獨立工作2天后,乙工程隊加入,兩工程隊又聯(lián)合工作了1天,這3天共掘進(jìn)26.已知甲工程隊每天比乙工程隊多掘進(jìn)2米,按此速度完成這項隧道貫穿工程,甲乙兩個工程隊還需聯(lián)合工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,M、N分別是邊AB、AC的中點,D是邊BC延長線上的一點,且,聯(lián)結(jié)CM、DN

1)求證:四邊形MCDN是平行四邊形;

2)若三角形AMN的面積等于5,求梯形MBDN的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠接受了20天內(nèi)生產(chǎn)1200臺GH型電子產(chǎn)品的總?cè)蝿?wù).已知每臺GH型產(chǎn)品由4個G型裝置和3個H型裝置配套組成.工廠現(xiàn)有80名工人,每個工人每天能加工6個G型裝置或3個H型裝置.工廠將所有工人分成兩組同時開始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數(shù)量正好全部配套組成GH型產(chǎn)品.

(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH型電子產(chǎn)品?請列出二元一次方程組解答此問題.

(2)為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補充一些新工人,這些新工人只能獨立進(jìn)行G型裝置的加工,且每人每天只能加工4個G型裝置.1.設(shè)原來每天安排x名工人生產(chǎn)G型裝置,后來補充m名新工人,求x的值(用含m的代數(shù)式表示)2.請問至少需要補充多少名新工人才能在規(guī)定期內(nèi)完成總?cè)蝿?wù)?

查看答案和解析>>

同步練習(xí)冊答案