【題目】已知A、B兩地相距600米,甲、乙兩人同時從A地出發(fā)前往B地,所走路程y(米)與行駛時間x(分)之間的函數(shù)關(guān)系如圖所示,則下列說法中:①甲每分鐘走100米;②兩分鐘后乙每分鐘走50米;③甲比乙提前3分鐘到達(dá)B地;④當(dāng)x=2或6時,甲乙兩人相距100米.正確的有_____(在橫線上填寫正確的序號).
【答案】①②④
【解析】
①根據(jù)函數(shù)圖象中的數(shù)據(jù),可知甲6分鐘走了600米,從而可以計算出甲每分鐘走的路程,從而可以判斷該小題是否正確;
②根據(jù)圖象中的數(shù)據(jù)可知,乙2分鐘到6分鐘走的路程是500﹣300=200米,從而可以計算出兩分鐘后乙每分鐘走的路程,從而可以判斷該小題是否正確;
③根據(jù)乙2分鐘后的速度,可以計算出乙從A地到B地用的總的時間,然后與6作差,即可判斷該小題是否正確;
④根據(jù)圖象,可以分別計算出x=2和x=6時,甲乙兩人的距離,從而可以判斷該小題是否正確.
解:由圖象可得,
甲每分鐘走:600÷6=100(米),故①正確;
兩分鐘后乙每分鐘走:(500﹣300)÷(6﹣2)=200÷4=50(米),故②正確;
乙到達(dá)B地用的時間為:2+(600﹣300)÷50=2+300÷50=2+6=8(分鐘),則甲比乙提前8﹣6=2分鐘達(dá)到B地,故③錯誤;
當(dāng)x=2時,甲乙相距300﹣100×2=300﹣200=100(米),當(dāng)x=6時,甲乙相距600﹣500=100米,故④正確;
故答案為:①②④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,.
(1)請用尺規(guī)作圖的方法在邊上確定點(diǎn),使得平分;(保留作圖痕跡,不寫作法)
(2)在(1)的條件下,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏從地出發(fā)向地行走,同時小聰從地出發(fā)向地行走,如圖,相交于點(diǎn)的兩條線段分別表示小敏、小聰離地的距離與已用時間之間的關(guān) 系,則_______時,小敏、小聰兩人相距.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑是2,點(diǎn)A、B、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( 。
A. π﹣2 B. π﹣ C. π﹣2 D. π﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點(diǎn)A;
(2)若AE∥BC,BC=2,AC=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD中,點(diǎn)E在邊DC上,DE=2,EC=1.把△ADE繞點(diǎn)A旋轉(zhuǎn)90°,點(diǎn)E的對應(yīng)點(diǎn)為點(diǎn)F,則F、C兩點(diǎn)的距離為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,,點(diǎn)在線段上運(yùn)動(不與重合),連結(jié),作,交線段于點(diǎn).
(1)當(dāng)時,= °;點(diǎn)從點(diǎn)向點(diǎn)運(yùn)動時,逐漸變 (填“大”或“小”);
(2)當(dāng)等于多少時,,請說明理由;
(3)在點(diǎn)的運(yùn)動過程中,的形狀也在改變,判斷當(dāng)等于多少度時,是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于點(diǎn)P(a,b)和點(diǎn)Q(a,b′),給出如下定義:
若b′=,則稱點(diǎn)Q為點(diǎn)P的限變點(diǎn).例如:點(diǎn)(2,3)的限變點(diǎn)的坐標(biāo)是(2,3),點(diǎn)(-2,5)的限變點(diǎn)的坐標(biāo)是(-2,-5).
(1)①點(diǎn)(,1)的限變點(diǎn)的坐標(biāo)是 ;
②在點(diǎn)A(-2,-1),B(-1,2)中有一個點(diǎn)是函數(shù)y=圖象上某一個點(diǎn)的限變點(diǎn),這個點(diǎn)是 ;(填“A”或“B”)
(2)若點(diǎn)P在函數(shù)y=-x+3(-2≤x≤k,k>-2)的圖象上,其限變點(diǎn)Q的縱坐標(biāo)b′的取值范圍是-5≤b′≤2,求k的取值范圍 ;
(3)若點(diǎn)P在關(guān)于x的二次函數(shù)y=x2-2tx+t2+t的圖象上,其限變點(diǎn)Q的縱坐標(biāo)b′的取值范圍是b′≥m或b′<n,其中m>n.令s=m-n,求s關(guān)于t的函數(shù)解析式及s的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,E為BC上一點(diǎn),連接AE,作EF⊥AE交AB于F.
(1)求證:△AGC∽△EFB.
(2)除(1)中相似三角形,圖中還有其它相似三角形嗎?如果有,請把它們都寫出來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com