【題目】如圖,已知拋物線y=ax2+bx+5經(jīng)過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.
(1)求該拋物線的表達(dá)式;
(2)點P為該拋物線上一動點(與點B、C不重合),設(shè)點P的橫坐標(biāo)為t.
①當(dāng)點P在直線BC的下方運動時,求△PBC的面積的最大值;
②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點P的坐標(biāo)為P(﹣,﹣)或(0,5).
【解析】
(1)將點A、B坐標(biāo)代入二次函數(shù)表達(dá)式,即可求出二次函數(shù)解析式;
(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:直線BC的表達(dá)式為:y=x+1,設(shè)點G(t,t+1),則點P(t,t2+6t+5),利用三角形面積公式求出最大值即可;
②設(shè)直線BP與CD交于點H,當(dāng)點P在直線BC下方時,求出線段BC的中點坐標(biāo)為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,求出 直線BC中垂線的表達(dá)式為:y=﹣x﹣4…③,同理直線CD的表達(dá)式為:y=2x+2…④,、聯(lián)立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達(dá)式為:y=x﹣1…⑤,聯(lián)立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點;當(dāng)點P(P′)在直線BC上方時,根據(jù)∠PBC=∠BCD求出BP′∥CD,求出直線BP′的表達(dá)式為:y=2x+5,聯(lián)立y=x2+6x+5和y=2x+5,求出x,即可求出P.
解:(1)將點A、B坐標(biāo)代入二次函數(shù)表達(dá)式得:,
解得:,
故拋物線的表達(dá)式為:y=x2+6x+5…①,
令y=0,則x=﹣1或﹣5,
即點C(﹣1,0);
(2)①如圖1,過點P作y軸的平行線交BC于點G,
將點B、C的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:
直線BC的表達(dá)式為:y=x+1…②,
設(shè)點G(t,t+1),則點P(t,t2+6t+5),
S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,
∵-<0,
∴S△PBC有最大值,當(dāng)t=﹣時,其最大值為;
②設(shè)直線BP與CD交于點H,
當(dāng)點P在直線BC下方時,
∵∠PBC=∠BCD,
∴點H在BC的中垂線上,
線段BC的中點坐標(biāo)為(﹣,﹣),
過該點與BC垂直的直線的k值為﹣1,
設(shè)BC中垂線的表達(dá)式為:y=﹣x+m,將點(﹣,﹣)代入上式并解得:
直線BC中垂線的表達(dá)式為:y=﹣x﹣4…③,
同理直線CD的表達(dá)式為:y=2x+2…④,
聯(lián)立③④并解得:x=﹣2,即點H(﹣2,﹣2),
同理可得直線BH的表達(dá)式為:y=x﹣1…⑤,
聯(lián)立①⑤并解得:x=﹣或﹣4(舍去﹣4),
故點P(﹣,﹣);
當(dāng)點P(P′)在直線BC上方時,
∵∠PBC=∠BCD,∴BP′∥CD,
則直線BP′的表達(dá)式為:y=2x+s,將點B坐標(biāo)代入上式并解得:s=5,
即直線BP′的表達(dá)式為:y=2x+5…⑥,
聯(lián)立①⑥并解得:x=0或﹣4(舍去﹣4),
故點P(0,5);
故點P的坐標(biāo)為P(﹣,﹣)或(0,5).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,過點A(﹣,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個根.
(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點D在直線AC上,且DB=DC,求點D的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點、,且與軸交于點,拋物線的頂點為,連接,點是線段上的一個動點(不與、)重合.
(1)求拋物線的解析式,并寫出頂點的坐標(biāo);
(2)過點作軸于點,求面積的最大值及取得最大值時點的坐標(biāo);
(3)在(2)的條件下,若點是軸上一動點,點是拋物線上一動點,試判斷是否存在這樣的點,使得以點,,,為頂點的四邊形是平行四邊若存在,請直接寫出點的坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將8個邊長為1的小正方形疊放,過其四個角的頂點A、E、F、G作一個矩形ABCD,則矩形ABCD的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車庫出口安裝的欄桿如圖所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=1.18米,AE=1.2米,那么適合該地下車庫的車輛限高標(biāo)志牌為( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我校舉辦的“讀好書、講禮儀”活動中,各班積極行動,圖書角的新書、好書不斷增多,除學(xué)校購買的圖書外,還有師生捐獻(xiàn)的圖書,下面是九(1)班全體同學(xué)捐獻(xiàn)圖書情況的統(tǒng)計圖(每人都有捐書).
請你根據(jù)以上統(tǒng)計圖中的信息,解答下列問題:
(1)該班有學(xué)生多少人?
(2)補全條形統(tǒng)計圖.
(3)九(1)班全體同學(xué)所捐圖書是 6 本的人數(shù)在扇形統(tǒng)計圖中所對應(yīng)扇形的圓心角為多少度?
(4)請你估計全校 2000 名學(xué)生所捐圖書的數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價為每件10元,現(xiàn)在的售價為每件15元,每周可賣出100件,市場調(diào)查反映:如果每件的售價每漲1元(售價每件不能高于20元),那么每周少賣10件.設(shè)每件漲價元(為非負(fù)整數(shù)),每周的銷量為件.
(1)求與的函數(shù)關(guān)系式及自變量的取值范圍;
(2)如果經(jīng)營該商品每周的利潤是560元,求每件商品的售價是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABD中,AB=AD,點M 為邊AD上一動點,點E在DA的延長線上,且AM=AE,以BE為直角邊,向外作等腰Rt△BEG,MG交AB于N,連NE、DN.
(1)求證:∠BEN=∠BGN.
(2)求的值.
(3)當(dāng)M在AD上運動時,探究四邊形BDNG的形狀,并證明之.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com