【題目】某校開展校園藝術節(jié)系列活動,派小明到文體超市購買若干個文具袋作為獎品.這種文具袋標價每個10元,請認真閱讀結賬時老板與小明的對話:
(1)結合兩人的對話內容,求小明原計劃購買文具袋多少個?
(2)學校決定,再次購買鋼筆和簽字筆共50支作為補充獎品,兩次購買獎品總支出不超過400元.其中鋼筆標價每支8元,簽字筆標價每支6元,經過溝通,這次老板給予8折優(yōu)惠,那么小明最多可購買鋼筆多少支?
科目:初中數學 來源: 題型:
【題目】對于一個大于1的正整數n進行如下操作:
① 將n拆分為兩個正整數a、b的和,并計算乘積a×b
② 對于正整數a、b分別重復此操作,得到另外兩個乘積
③ 重復上述過程,直至不能再拆分為止(即拆分到正整數1)
當n=6時,所有的乘積的和為_________,當n=100時,所有的乘積的和為_________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規(guī)律繼續(xù)下去,則S2018的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場同時購進甲、乙兩種商品共200件,其進價和售價如表,
商品名稱 | 甲 | 乙 |
進價(元/件) | 80 | 100 |
售價(元/件) | 160 | 240 |
設其中甲種商品購進x件,該商場售完這200件商品的總利潤為y元.
(1)求y與x的函數關系式;
(2)該商品計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x=,且經過點(2,0),有下列說法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2.上述說法正確的是( )
A.①②③④ B.③④ C.①③④ D.①②
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明同學三次到某超市購買A、B兩種商品,其中僅有一次是有折扣的,購買數量及消費金額如下表:
類別 次數 | 購買A商品數量(件) | 購買B商品數量(件) | 消費金額(元) |
第一次 | 4 | 5 | 320 |
第二次 | 2 | 6 | 300 |
第三次 | 5 | 7 | 258 |
解答下列問題:
(1)第 次購買有折扣;
(2)求A、B兩種商品的原價;
(3)若購買A、B兩種商品的折扣數相同,求折扣數;
(4)小明同學再次購買A、B兩種商品共10件,在(3)中折扣數的前提下,消費金額不超過200元,求至少購買A商品多少件.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(問題提出):分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b
(問題探究):某數學“探究學習”小組對以上因式分解題目進行了如下探究:
探究1:分解因式:(1)2x2+2xy﹣3x﹣3y
該多項式不能直接使用提取公因式法,公式法進行因式分解.于是仔細觀察多項式的特點.甲發(fā)現(xiàn)該多項式前兩項有公因式2x,后兩項有公因式﹣3,分別把它們提出來,剩下的是相同因式(x+y),可以繼續(xù)用提公因式法分解.
解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x﹣3)
另:乙發(fā)現(xiàn)該多項式的第二項和第四項含有公因式y,第一項和第三項含有公因式x,把y、x提出來,剩下的是相同因式(2x﹣3),可以繼續(xù)用提公因式法分解.
解:2x2+2xy﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x﹣3)(x+y)
探究2:分解因式:(2)a2﹣b2+4a﹣4b
該多項式亦不能直接使用提取公因式法,公式法進行因式分解,于是若將此題按探究1的方法分組,將含有a的項分在一組即a2+4a=a(a+4),含有b的項一組即﹣b2﹣4b=﹣b(b+4),但發(fā)現(xiàn)a(a+4)與﹣b(b+4)再沒有公因式可提,無法再分解下去.于是再仔細觀察發(fā)現(xiàn),若先將a2﹣b2看作一組應用平方差公式,其余兩項看作一組,提出公因式4,則可繼續(xù)再提出因式,從而達到分解因式的目的.
解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a﹣b)+4(a﹣b)=(a﹣b)(4+a+b)
(方法總結):對不能直接使用提取公因式法,公式法進行分解因式的多項式,我們可考慮把被分解的多項式分成若干組,分別按“基本方法”即提取公因式法和運用公式法進行分解,然后,綜合起來,再從總體上按“基本方法”繼續(xù)進行分解,直到分解出最后結果.這種分解因式的方法叫做分組分解法.
分組分解法并不是一種獨立的因式分解的方法,而是通過對多項式進行適當的分組,把多項式轉化為可以應用“基本方法”分解的結構形式,使之具有公因式,或者符合公式的特點等,從而達到可以利用“基本方法”進行分解因式的目的.
(學以致用):嘗試運用分組分解法解答下列問題:
(1)分解因式:
(2)分解因式:
(拓展提升):
(3)嘗試運用以上思路分解因式:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長一定的正方形ABCD,Q是CD上一動點,AQ交BD于點M,過M作MN⊥AQ交BC于N點,作NP⊥BD于點P,連接NQ,下列結論:①AM=MN;
②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com