(2007•莆田)如圖,經(jīng)過某十字路口的汽車,它可能選擇道路A,可能選擇道路B,也可能選擇道路C,且三種可能性大小相同,現(xiàn)有甲、乙二輛汽車同向同時到達(dá)同一路口.
(1)請用列表法或樹形圖,分析二輛車選擇道路行駛的所有可能的結(jié)果;
(2)求二輛車經(jīng)過該十字路口時,選擇道路相同的概率及選擇道路不相同的概率.

【答案】分析:依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率.
解答:解:(1)列表法:
ABC
AAABACA
BABBBCB
CACBCCC
或樹形圖:

二輛車選擇道路行駛的所有可能的結(jié)果共有9種且每種結(jié)果出現(xiàn)的可能性相等;

(2)選擇道路相同的結(jié)果有3種,即AA,BB,CC,所以P(道路相同)==
選擇道路不同的結(jié)果有6種,即BA,CA,AB,CB,AC,BC,所以P(道路不同)==
點(diǎn)評:本題著重考查了用樹狀圖列舉隨機(jī)事件出現(xiàn)的所有情況,并求出某些事件的概率,但應(yīng)注意在求概率時各種情況出現(xiàn)的可能性務(wù)必相同.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2007•莆田)如圖,拋物線y=x2+mx+n(其中m,n為常數(shù)且m>n)與y軸正半軸交于A點(diǎn),它的對稱軸交x軸正半軸于C點(diǎn),拋物線的頂點(diǎn)為P,Rt△ABC的直角頂點(diǎn)B在對稱軸上,當(dāng)它繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°得到Rt△A′B′C.
(1)寫出點(diǎn)A,P,A′的坐標(biāo)(用含m,n的式子表示);
(2)若直線BB'交y軸于E點(diǎn),求證:線段B′E與AA′互相平分;
(3)若點(diǎn)A′在拋物線上且Rt△ABC的面積為1時,請求出拋物線的解析式并判斷在拋物線的對稱軸上是否存在點(diǎn)D,使△AA′D為等腰三角形?若存在,請直接寫出所有符合條件的D點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年福建省莆田市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•莆田)如圖,拋物線y=x2+mx+n(其中m,n為常數(shù)且m>n)與y軸正半軸交于A點(diǎn),它的對稱軸交x軸正半軸于C點(diǎn),拋物線的頂點(diǎn)為P,Rt△ABC的直角頂點(diǎn)B在對稱軸上,當(dāng)它繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°得到Rt△A′B′C.
(1)寫出點(diǎn)A,P,A′的坐標(biāo)(用含m,n的式子表示);
(2)若直線BB'交y軸于E點(diǎn),求證:線段B′E與AA′互相平分;
(3)若點(diǎn)A′在拋物線上且Rt△ABC的面積為1時,請求出拋物線的解析式并判斷在拋物線的對稱軸上是否存在點(diǎn)D,使△AA′D為等腰三角形?若存在,請直接寫出所有符合條件的D點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年福建省莆田市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•莆田)如圖,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,將△ABC沿直線BC向右平移2.5個單位得到△DEF,連接AD,AE,則下列結(jié)論中不成立的是( )

A.AD∥BE,AD=BE
B.∠ABE=∠DEF
C.ED⊥AC
D.△ADE為等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年福建省莆田市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•莆田)如圖所示支架(一種小零件,支架的兩個臺階的高度和寬度都是同一長度)的主視圖是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案