【題目】如圖所示,在兩建筑物之間有一高為15米的旗桿,從高建筑物的頂端A點經過旗桿頂點恰好看到矮建筑物的底端墻角C點,且俯角a為60°,又從A點測得矮建筑物左上角頂端D點的俯角β為30°,若旗桿底部點G為BC的中點(點B為點A向地面所作垂線的垂足)則矮建筑物的高CD為_____.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3)
(1)將△ABC向右平移6個單位至△A1B1C1,再將△A1B1C1繞點E(5,1)逆時針旋轉90°至△A2B2C2,請按要求畫出圖形;
(2)在(1)的變換過程中,直接寫出點C的運動路徑長
(3)△A2B2C2可看成△ABC繞某點P旋轉90°得到的,則點P的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是直角邊長為1cm的等腰直角三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當點P到達點B時,P、Q兩點停止運動,設點P的運動時間為t(s),解答下列各問題:
(1)當t為何值時,△PBQ是直角三角形?
(2)設四邊形APQC的面積為y(cm2),求y與t的關系式;是否存在某一時刻t,使四邊形APQC的面積是△ABC面積的二分之一?如果存在,求出t的值;不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,為原點,拋物線經過點,對稱軸為直線,點關于直線的對稱點為點.過點作直線軸,交軸于點.
(Ⅰ)求該拋物線的解析式及對稱軸;
(Ⅱ)點在軸上,當的值最小時,求點的坐標;
(Ⅲ)拋物線上是否存在點,使得,若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校計劃購買某種樹苗綠化校園,甲、乙兩林場這種樹苗的售價都是每棵20元,又各有不同的優(yōu)惠方案,甲林場:若一次購買20棵以上,售價是每棵18元;乙林場:若一次購買10棵以上,超過10棵部分打8.5折。設學校一次購買這種樹苗x棵(x是正整數).
(Ⅰ)根據題意填寫下表:
學校一次購買樹苗(棵) | 10 | 15 | 20 | 40 |
在甲林場實際花費(元) | 200 | 300 | ||
在乙林場實際花費(元) | 200 | 370 | 710 |
(Ⅱ)學校在甲林場一次購買樹苗,實際花費記為(元),在乙林場一次購買樹苗,實際花費記為(元),請分別寫出與x的函數關系式;
(Ⅲ)當時,學校在哪個林場一次購買樹苗,實際花費較少?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓O交BC于點D,交AC于點E,過點A作半圓O的切線交BC的延長線于點F,連結BE,AD
(1)求證:∠F=∠EBC;
(2)若AE=2,tan∠EAD=,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(2,0),點B(0,),點O(0,0).△AOB繞著O順時針旋轉,得△A'OB',點A、B旋轉后的對應點為A',B',記旋轉角為α.
(Ⅰ)如圖1,A'B'恰好經過點A時,求此時旋轉角α的度數,并求出點B'的坐標;
(Ⅱ)如圖2,若0°<α<90°,設直線AA'和直線BB'交于點P,求證:AA'⊥BB';
(Ⅲ)若0°<α<360°,求(Ⅱ)中的點P縱坐標的最小值(直接寫出結果即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),拋物線與y軸交于點A,E(0,b)為y軸上一動點,過點E的直線與拋物線交于點B、C .
(1)則點A的坐標是 ______ ;
(2)當b = 0時(如圖(2)),△ABE與△ACE的面積大小關系如何?當時,上述關系還成立嗎,為什么?
(3)是否存在這樣的b,使得△BOC是以BC 為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com