甲、乙從同一地點出發(fā),甲乘坐電動觀光車,乙步行,沿著同一條山路上山游玩,兩人相約在電動車終點站會合.設乙出發(fā)x分鐘后行走的路程為y米,圖中的折線表示乙在整個行走過程中y與x的函數(shù)關系.甲乘坐的電動觀光車平均速度為180米/分.
(1)乙行走的總路程是______米,他在中途休息了______分鐘;
(2)①當25≤x≤35時,求y關于x的函數(shù)關系.②若甲在乙出發(fā)后20分鐘乘車,則乙出發(fā)后幾分鐘甲能追上乙?
(1)函數(shù)圖象中最高點的縱坐標1800即為乙的總路程,休息的時間=25-20=5,
故答案為1800;5;

(2)①設所求的函數(shù)解析式為y=kx+b,
25k+b=1200
35k+b=1800
,
解得:
k=60
b=-300

∴y=60x-300;

②設乙出發(fā)后x分鐘甲能追上乙.
乙的速度為:1200÷20=60米/分;
60×(x-5)=180×(x-20),
解得:x=27.5,
答:乙出發(fā)后27.5分鐘甲能追上乙.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

一次函數(shù)y=kx+b的圖象經過點(1,3)和點(4,6).
(1)求k和b;
(2)畫出這個一次函數(shù)的圖象;
(3)若圖象上有一點P到x軸的距離為4,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一次函數(shù)y=kx+b的圖象經過點M(-1,1)及點N(0,2),設該圖象與x軸交于點A,與y軸交于點B,問:在x軸上是否存在點P,使ABP為等腰三角形?若存在,把符合條件的點P的坐標都求出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖.直線AB值對應的函數(shù)解析式是( 。
A.y=-
3
2
x+3
B.y=
3
2
x+3
C.y=-
2
3
x+3
D.y=
2
3
x+3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一次函數(shù)y=kx+4的圖象經過點(-3,-2).
(1)求這個函數(shù)表達式;
(2)畫出該函數(shù)的圖象;
(3)判斷(-5,3)是否在此函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

有六個學生分成甲、乙兩組(每組三個人),分乘兩輛出租車同時從學校出發(fā)去距學校60km的博物館參觀,10分鐘后到達距離學校12km處有一輛汽車出現(xiàn)故障,接著正常行駛的一輛車先把第一批學生送到博物館再回頭接第二批學生,同時第二批學生步行12km后停下休息10分鐘恰好與回頭接他們的小汽車相遇,當?shù)诙鷮W生到達博物館時,恰好已到原計劃時間、設汽車載人和空載時的速度不變,學生步行速度不變,汽車離開學校的路程s(千米)與汽車行駛時間t(分鐘)之間的函數(shù)關系如圖,假設學生上下車時間忽略不計,
(1)原計劃從學校出發(fā)到達博物館的時間是______分鐘;
(2)求汽車在回頭接第二批學生途中的速度;
(3)假設學生在步行途中不休息且步行速度每分鐘減小0.04km,汽車載人時和空載時速度不變,問能否經過合理的安排,使得學生從學校出發(fā)全部到達目的地的時間比原計劃時間早10分鐘?如果能,請簡要說出方案,并通過計算說明;如果不能,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直角梯形OABC的下底邊OA在x軸的負半軸上,CBOA,點B的坐標為(-
10
3
,4),OA=
3
2
CB.
(1)求直線AB的解析式;
(2)點P從點C出發(fā),以每秒1個單位的速度沿射線CB運動,連接PA,設點P的運動時間為t秒.設△PAB的面積為S,求S與t的函數(shù)關系式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,當t為何值時,以PA為底△PAB是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某縣為了打造梨鄉(xiāng)水城,發(fā)展旅游業(yè),從2008年開始擴大梨樹種植面積,梨樹種植面積y(百畝)與時間x(年)之間的函數(shù)關系如圖所示.
(1)求y與x之間的函數(shù)關系式;(不必寫自變量x的取值范圍)
(2)求該縣2012年梨樹的種植面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線l1:y=
2
3
x+
8
3
與直線l2:y=-2x+16相交于點C,l1、l2分別交x軸于A、B兩點.矩形DEFG的頂點D、E分別在直線l1、l2上,頂點F、G都在x軸上,且點G與點B重合.
(1)求△ABC的面積;
(2)求矩形DEFG的邊DE與EF的長;
(3)若矩形DEFG沿x軸的反方向以每秒1個單位長度的速度平移,設移動時間為t(0≤t≤12)秒,矩形DEFG與△ABC重疊部分的面積為S,求S關于t的函數(shù)關系式,并寫出相應的t的取值范圍.

查看答案和解析>>

同步練習冊答案