【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點B的坐標(biāo)為(﹣4,4).點P從點A出發(fā),以每秒1個單位長度的速度沿x軸向點O運動;點Q從點O同時出發(fā),以相同的速度沿x軸的正方向運動,規(guī)定點P到達點O時,點Q也停止運動.連接BP,過P點作BP的垂線,與過點Q平行于y軸的直線l相交于點D.BD與y軸交于點E,連接PE.設(shè)點P運動的時間為t(s).
(1)∠PBD的度數(shù)為 , 點D的坐標(biāo)為(用t表示);
(2)當(dāng)t為何值時,△PBE為等腰三角形?
(3)探索△POE周長是否隨時間t的變化而變化?若變化,說明理由;若不變,試求這個定值.
【答案】
(1)解:45°;(t,t)
(2)解:①若PB=PE,
由△PAB≌△DQP得PB=PD,
顯然PB≠PE,
∴這種情況應(yīng)舍去.
②若EB=EP,
則∠PBE=∠BPE=45°.
∴∠BEP=90°.
∴∠PEO=90°﹣∠BEC=∠EBC.
在△POE和△ECB中,
∴△POE≌△ECB(AAS).
∴OE=CB=OC.
∴點E與點C重合(EC=0).
∴點P與點O重合(PO=0).
∵點B(﹣4,4),
∴AO=CO=4.
此時t=AP=AO=4.
③若BP=BE,
在Rt△BAP和Rt△BCE中,
∴Rt△BAP≌Rt△BCE(HL).
∴AP=CE.
∵AP=t,
∴CE=t.
∴PO=EO=4﹣t.
∵∠POE=90°,
∴PE=
= (4﹣t).
延長OA到點F,使得AF=CE,連接BF,如圖2所示.
在△FAB和△ECB中,
∴△FAB≌△ECB.
∴FB=EB,∠FBA=∠EBC.
∵∠EBP=45°,∠ABC=90°,
∴∠ABP+∠EBC=45°.
∴∠FBP=∠FBA+∠ABP
=∠EBC+∠ABP=45°.
∴∠FBP=∠EBP.
在△FBP和△EBP中,
∴△FBP≌△EBP(SAS).
∴FP=EP.
∴EP=FP=FA+AP
=CE+AP.
∴EP=t+t=2t.
∴ (4﹣t)=2t.
解得:t=4 ﹣4
∴當(dāng)t為4秒或(4 ﹣4)秒時,△PBE為等腰三角形
(3)解:∵EP=CE+AP,
∴OP+PE+OE=OP+AP+CE+OE
=AO+CO
=4+4
=8.
∴△POE周長是定值,該定值為8
【解析】解:(1)如圖1,
由題可得:AP=OQ=1×t=t(秒)
∴AO=PQ.
∵四邊形OABC是正方形,
∴AO=AB=BC=OC,
∠BAO=∠AOC=∠OCB=∠ABC=90°.
∵DP⊥BP,
∴∠BPD=90°.
∴∠BPA=90°﹣∠DPQ=∠PDQ.
∵AO=PQ,AO=AB,
∴AB=PQ.
在△BAP和△PQD中,
∴△BAP≌△PQD(AAS).
∴AP=QD,BP=PD.
∵∠BPD=90°,BP=PD,
∴∠PBD=∠PDB=45°.
∵AP=t,
∴DQ=t.
∴點D坐標(biāo)為(t,t).
故答案為:45°,(t,t).
(1)易證△BAP≌△PQD,從而得到DQ=AP=t,從而可以求出∠PBD的度數(shù)和點D的坐標(biāo).(2)由于∠EBP=45°,故圖1是以正方形為背景的一個基本圖形,容易得到EP=AP+CE.由于△PBE底邊不定,故分三種情況討論,借助于三角形全等及勾股定理進行求解,然后結(jié)合條件進行取舍,最終確定符合要求的t值.(3)由(2)已證的結(jié)論EP=AP+CE很容易得到△POE周長等于AO+CO=8,從而解決問題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司倉庫本周內(nèi)貨物進出的噸數(shù)記錄如下“”表示進庫,“”表示出庫;
日期 | 星期日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 |
噸數(shù) |
這一周,倉庫內(nèi)貨物的總噸數(shù)是______了填“增多”或“減少”;
若周六結(jié)束時倉庫內(nèi)還有貨物360噸,則周日開始時倉庫內(nèi)有貨物多少噸?
如果該倉庫貨物進出的裝卸費都是每噸5元,那么這一周內(nèi)共需付多少元的裝卸費?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設(shè)運動時間為t秒.
(1)填空:點A坐標(biāo)為;拋物線的解析式為 .
(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當(dāng)一個點到達終點時,另一個點隨之停止運動.當(dāng)t為何值時,△PCQ為直角三角形?
(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當(dāng)t為何值時,△ACQ的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生體育訓(xùn)練的情況,某市從全市九年級學(xué)生中隨機抽取部分學(xué)生進行了一次體育科目測試(把成績結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)求本次抽樣測試的學(xué)生人數(shù);
(2)求扇形圖中∠α的度數(shù),并把條形統(tǒng)計圖補充完整;
(3)該市九年級共有學(xué)生9000名,如果全部參加這次體育測試,則測試等級為D的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價200元,領(lǐng)帶每條定價40元。廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:
①買一套西裝送一條領(lǐng)帶;②西裝和領(lǐng)帶都按定價的90%付款,F(xiàn)某客戶要到該服裝廠購買西裝20套,領(lǐng)帶x條():
(1)若該客戶按方案①購買,需付款______________元(用含x的代數(shù)式表示);若該客戶按方案②購買,需付款________________元(用含x的代數(shù)式表示);
(2)若x=30,通過計算說明此時按哪種方案購買較為合算?
(3)當(dāng)x=30時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)填在相應(yīng)的橫線上.
,-,,0.5,2π,3.14159265,-|-|,1.3030030003…(每相鄰兩個3之間依次多一個0).
(1)有理數(shù):______________________________________________________;
(2)無理數(shù):_________________________________________________________;
(3)正實數(shù):__________________________________________________________;
(4)負(fù)實數(shù):__________________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一條射線OA,若從點O再引兩條射線OB和OC,使∠AOB=80°,∠BOC=40°,若OD平分∠AOC,則∠BOD的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若t為實數(shù),關(guān)于x的方程x2﹣4x+t﹣2=0的兩個非負(fù)實數(shù)根為a、b,則代數(shù)式(a2﹣1)(b2﹣1)的最小值是( )
A.﹣15
B.﹣16
C.15
D.16
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com