(2005•中原區(qū))某校學生會發(fā)現(xiàn)同學們吃飯時浪費現(xiàn)象嚴重,于是學生會宣傳部在食堂的黑板上出了一道數(shù)學題:已知1克大米約52粒,如果1個人1天浪費1粒大米,那么全國13億人口,每天大約就要浪費    克大米(用科學記數(shù)法表示).
【答案】分析:根據(jù)題意先計算出一天浪費的大米克數(shù),然后用科學記數(shù)法表示.
確定a×10n(1≤|a|<10,n為整數(shù))中n的值是易錯點,由于25 000 000有8位,所以可以確定n=8-1=7.
解答:解:13億×1÷52=25 000 000=2.5×107克.
點評:把一個數(shù)M記成a×10n(1≤|a|<10,n為整數(shù))的形式,這種記數(shù)的方法叫做科學記數(shù)法.規(guī)律:
(1)當|a|≥1時,n的值為a的整數(shù)位數(shù)減1;
(2)當|a|<1時,n的值是第一個不是0的數(shù)字前0的個數(shù),包括整數(shù)位上的0.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圓》(12)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《三角形》(08)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一元二次方程》(07)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

同步練習冊答案