【題目】已知直線l1:y=kx過點(1,2),與直線l2:y=﹣3x+b相交于點A,若l2與x軸交于點B(2,0),與y軸交于點C.
(1)分別求出直線11,l2的解析式;
(2)求△OAC的面積.
【答案】(1)y1=2x; y2=﹣3x+6;(2).
【解析】
(1)直接把點(1,2)代入l1解析式中,求出k的值;把點B(2,0)代入直線l2,求出b的值即可;
(2)首先將直線l1,l2的解析式聯(lián)立,求出交點A的坐標(biāo),再根據(jù)l2的解析式求出點C的坐標(biāo),然后根據(jù)三角形的面積公式列式求出答案.
解:(1)∵直線l1:y=kx過點(1,2),
∴k=2,
∴直線l1的解析式為y1=2x;
∵直線l2:y=﹣3x+b與x軸交于點B(2,0),
∴﹣3×2+b=0,
∴b=6,
∴直線l2的解析式為y2=﹣3x+6;
(2)由 ,解得 ,
∴點A的坐標(biāo)為( , ).
∵直線l2:y=﹣3x+6與y軸交于點C,
∴C(0,6).
∴S△OAC=×6×=.
故答案為:(1)y1=2x; y2=﹣3x+6;(2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結(jié)OC,AC.
(1)求證:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°;
①求∠OCE的度數(shù). ②若⊙O的半徑為 ,求線段CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC,過點A作直線DE,且滿足BD⊥DE于點D,CE⊥DE于點E,當(dāng)B,C在直線DE的同側(cè)時,
(1)求證:DE=BD+CE;
(2)如果上面條件不變,當(dāng)B,C在直線DE的異側(cè)時,如圖2,問BD、DE、CE之間的數(shù)量關(guān)系如何?寫出結(jié)論并證明
(3)如果上面條件不變,當(dāng)B,C在直線DE的異側(cè)時,如圖3,問BD、DE、CE之間的數(shù)量關(guān)系如何?寫出結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(-1,3),點B(-1,-4),若常數(shù)a使得一次函數(shù)y=ax+1與線段AB有交點,且使得關(guān)于x的不等式組無解,則所有滿足條件的整數(shù)a的個數(shù)為( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題.
如圖,、分別為數(shù)軸上的兩點,點對應(yīng)的數(shù)為,點對應(yīng)的數(shù)為.
()請寫出與、兩點距離相等的點所對應(yīng)的數(shù).
()現(xiàn)有一只電子螞蟻從點出發(fā),以單位/秒的速度向左運(yùn)動,同時另一只電子螞蟻恰好從點出發(fā),以單位/秒的速度向右運(yùn)動,設(shè)兩只電子螞蟻在數(shù)軸上的點相遇,你知道點對應(yīng)的數(shù)是多少嗎?
()若當(dāng)電子螞蟻從點出發(fā)時,以單位/秒的速度向左運(yùn)動,同時另一只電子螞蟻恰好從點出發(fā),以單位/秒的速度也向左運(yùn)動,設(shè)兩只電子螞蟻在數(shù)軸上的點相遇,你知道點對應(yīng)的數(shù)是多少嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,直線y1=﹣x+3與x軸、y軸分別交于A、B兩點,直線y2=﹣2x+b經(jīng)過點A,已知點C(﹣1,0),直線BC與直線y2相交于點D.
(1)請直接寫出:A點坐標(biāo)為 ,直線BC解析式為 ,D點坐標(biāo)為 ;
(2)若線段OA在x軸上移動,且點O,A移動后的對應(yīng)點為O1、A1,首尾順次連接點O1、A1、D、B構(gòu)成四邊形O1A1DB,當(dāng)四邊形O1A1DB的周長最小時,y軸上是否存在點M,使|A1M﹣DM|有最大值,若存在,請求出此時M的坐標(biāo);若不存在請說明理由.
(3)如圖3,過點D作DE∥y軸,與直線AB交于點E,若Q為線段AD上一動點,將△DEQ沿邊EQ翻折得到直線AB上方的△D′EQ,是否存在點Q使得△D′EQ與△AEQ的重疊部分圖形為直角三角形,若存在,請求出DQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE于點G,BG=4,則△EFC的周長為( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)平面內(nèi)有兩點A(0,2)、B(﹣2,0)、C(2,0).
(1)△ABC的形狀是 等腰直角三角形;
(2)求△ABC的面積及AB的長;
(3)在y軸上找一點P,如果△PAB是等腰三角形,請直接寫出點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com