【題目】如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設(shè)運動時間為t秒.
(1)求拋物線的解析式.
(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?
(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?
【答案】(1)y=﹣x2+2x+3;(2)當t=或t=時,△PCQ為直角三角形;(3)當t=2時,△ACQ的面積最大,最大值是1.
【解析】
(1)根據(jù)拋物線的對稱軸與矩形的性質(zhì)可得點A的坐標,根據(jù)待定系數(shù)法可得拋物線的解析式;
(2)先根據(jù)勾股定理可得CE,再分兩種情況:當∠QPC=90°時;當∠PQC=90°時;討論可得△PCQ為直角三角形時t的值;
(3)根據(jù)待定系數(shù)法可得直線AC的解析式,根據(jù)S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.
解:(1)∵拋物線的對稱軸為x=1,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4),點A在DE上,
∴點A坐標為(1,4),
設(shè)拋物線的解析式為y=a(x﹣1)2+4,把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.
故拋物線的解析式為y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;
(2)依題意有:OC=3,OE=4,
∴CE===5,
當∠QPC=90°時,
∵cos∠QPC=,
∴,解得t=;
當∠PQC=90°時,
∵cos∠QCP=,
∴,解得t=.
∴當t=或 t=時,△PCQ為直角三角形;
(3)∵A(1,4),C(3,0),
設(shè)直線AC的解析式為y=kx+b,則有:
,解得.故直線AC的解析式為y=﹣2x+6.
∵P(1,4﹣t),將y=4﹣t代入y=﹣2x+6中,得x=1+,
∴Q點的橫坐標為1+,將x=1+ 代入y=﹣(x﹣1)2+4 中,得y=4﹣.
∴Q點的縱坐標為4﹣,
∴QF=(4﹣)﹣(4﹣t)=t﹣,
∴S△ACQ =S△AFQ +S△CFQ
=FQAG+FQDG,
=FQ(AG+DG),
=FQAD,
=×2(t﹣),
=﹣(t﹣2)2+1,
∴當t=2時,△ACQ的面積最大,最大值是1.
科目:初中數(shù)學 來源: 題型:
【題目】某市為創(chuàng)建全國文明城市,開展“美化綠化城市”活動,計劃經(jīng)過若干年使城區(qū)綠化總面積新增360萬平方米.自2013年初開始實施后,實際每年綠化面積是原計劃的1.6倍,這樣可提前4年完成任務(wù).
(1)問實際每年綠化面積多少萬平方米?
(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過2年完成,那么實際平均每年綠化面積至少還要增加多少萬平方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】居民區(qū)內(nèi)的“廣場舞”引起媒體關(guān)注,遼寧都市頻道為此進行過專訪報道.小平想了解本小區(qū)居民對“廣場舞”的看法,進行了一次抽樣調(diào)查,把居民對“廣場舞”的看法分為四個層次:A.非常贊同;B.贊同但要有時間限制;C.無所謂;D.不贊同.并將調(diào)查結(jié)果繪制了圖1和圖2兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息解答下列問題:
(1)求本次被抽查的居民有多少人?
(2)將圖1和圖2補充完整;
(3)求圖2中“C”層次所在扇形的圓心角的度數(shù);
(4)估計該小區(qū)4000名居民中對“廣場舞”的看法表示贊同(包括A層次和B層次)的大約有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在平面直角坐標系xOy中,拋物線經(jīng)過原點,且與x軸相交于點A,點A的橫坐標為6,拋物線頂點為點B.
(1)求這條拋物線的表達式和頂點B的坐標;
(2)過點O作OP∥AB,在直線OP上點取一點Q,使得∠QAB=∠OBA,求點Q的坐標;
(3)將該拋物線向左平移m(m>0)個單位,所得新拋物線與y軸負半軸相交于點C且頂點仍然在第四象限,此時點A移動到點D的位置,CB:DB=3:4,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P,O兩點的二次函數(shù)y1和過P,A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B,C,射線OB與射線AC相交于點D.當△ODA是等邊三角形時,這兩個二次函數(shù)的最大值之和等于__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,山坡上有一棵樹AB,樹底部B點到山腳C點的距離BC為米,山坡的坡角為30°.小寧在山腳的平地F處測量這棵樹的高,點C到測角儀EF的水平距離CF=1米,從E處測得樹頂部A的仰角為45°,樹底部B的仰角為20°,求樹AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】y=﹣2x+4直線交x軸于點A,交y軸于點B,拋物線y=﹣(x﹣m)(x﹣6)(m>0)經(jīng)過點A,交x軸于另一點C,如圖所示.
(1)求拋物線的解析式.
(2)設(shè)拋物線的頂點為D,連接BD,AD,CD,動點P在BD上以每秒2個單位長度的速度由點B向點D運動,同時動點Q在線段CA上以每秒3個單位長度的速度由點C向點A運動,當其中一個點到達終點停止運動時,另一個點也隨之停止運動,設(shè)運動時間為t秒.PQ交線段AD于點E.
①當∠DPE=∠CAD時,求t的值;
②過點E作EM⊥BD,垂足為點M,過點P作PN⊥BD交線段AB或AD于點N,當PN=EM時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,有一個等腰直角三角形AOB,∠OAB= 90° ,直角邊AO在x軸上,且AO= 1.將 Rt△AOB繞原點O順時針旋轉(zhuǎn)90° 得到等腰直角三角形A1OB1,且A1O= 2AO,再將Rt△A1OB1繞原點O順時針旋轉(zhuǎn)90°得到等腰直角三角形A2OB2,且A2O=2A1O......依此規(guī)律,得到等腰直角三角形A2018OB2018 ,則點A2018的坐標為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com