如圖,拋物線y=ax2+bx+
5
2
與直線AB交于點A(-1,0),B(4,
5
2
).點D是拋物線A,B兩點間部分上的一個動點(不與點A,B重合),直線CD與y軸平行,交直線AB于點C,連接AD,BD.
(1)求拋物線的解析式;
(2)①當D為拋物線頂點時,線段DC的長度是多少?
②設(shè)點D的橫坐標為m,△ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(1)由題意得
a-b+
5
2
=0
16a+4b+
5
2
=
5
2
.

解得:
a=-
1
2
b=2.

故拋物線解析式為:y=-
1
2
x2+2x+
5
2


(2)①∵y=-
1
2
x2+2x+
5
2
=-
1
2
(x-2)2+
9
2

∴頂點D(2,
9
2
)

設(shè)直線AB為:y=kx+b,
則有
-k+b=0
4k+b=
5
2
.

解得
k=
1
2
b=
1
2
.

∴直線解析式為:y=
1
2
x+
1
2
,
當x=2時,y=
1
2
×2+
1
2
=
3
2
,
C(2,
3
2
)

CD=
9
2
-
3
2
=3


②由題意可得:D(m,-
1
2
m2+2m+
5
2
),C(m,
1
2
m+
1
2
),
CD=(-
1
2
m2+2m+
5
2
)-(
1
2
m+
1
2

=-
1
2
m2+
3
2
m+2

S=
1
2
(m+1)•CD+
1
2
(4-m)•CD

=
1
2
×5
×CD
=
1
2
×5
×(-
1
2
m2+
3
2
m+2

=-
5
4
m2+
15
4
m+5
=-
5
4
(m-
3
2
2+
125
16

-
5
4
<0
,
∴當m=
3
2
時,S最大值為
125
16

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=x2-2x+k與x軸交于A、B兩點,與y軸交于點C(0,-3).
(1)k=______,點A的坐標為______,點B的坐標為______;
(2)設(shè)拋物線y=x2-2x+k的頂點為M,求四邊形ABMC的面積;
(3)在直線BC下方的拋物線上是否存在一點D,使四邊形ABDC的面積最大?若存在,請求出點D的坐標;若不存在,請說明理由;
(4)設(shè)經(jīng)過點A、B、C三點的圓是⊙P,請直接寫出:它的半徑長為______,圓心P的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=(x-2)2的頂點為C,直線y=2x+4與拋物線交于A、B兩點,試求S△ABC

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線l經(jīng)過A(-2,0)和B(0,2)兩點,它與拋物線y=ax2在第二象限內(nèi)相交于點P,且△AOP的面積為1,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

受不法投機商炒作的影響,去年黑豆價格出現(xiàn)了大幅度波動.1至3月份,黑豆價格大幅度上漲,其價格y1(萬元/噸)與月份x(1≤x≤3,且x取整數(shù))之間的關(guān)系如下表:
月份x123
價格y1(萬元/噸)2.62.83
而從4月份起,黑豆價格大幅度走低,其價格y2(萬元/噸)與月份x(4≤x≤6,且x取整數(shù))之間的函數(shù)關(guān)系如圖所示.
(1)請觀察題中的表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出黑豆價格y1(萬元/噸)與月份x之間所滿足的函數(shù)關(guān)系式;觀察如圖,直接寫出黑豆價格y2(萬元/噸)與月份x之間所滿足的一次函數(shù)關(guān)系式;
(2)某食品加工廠每月均在上旬進貨,去年1至3月份的黑豆進貨量p1(噸)與月份x之間所滿足的函數(shù)關(guān)系式為p1=-10x+180(1≤x≤3,且x取整數(shù));4至6月份黑豆進貨量p2(噸)與月份x之間所滿足的函數(shù)關(guān)系式為p2=30x-30(4≤x≤6,且x取整數(shù)).求在前6個月中該加工廠的黑豆進貨金額最大的月份和該月的進貨金額;
(3)去年7月份黑豆價格在6月的基礎(chǔ)上下降了a%,進貨量在6月份的基礎(chǔ)上增加了2a%.使得7月份進貨金額為363萬元,請你計算出a的最大整數(shù)值.
(參考數(shù)據(jù):
3
≈1.7
,
5
≈2.2
,
6
≈2.4
,
7
≈2.6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

天羽服裝廠生產(chǎn)M、N型兩種服裝,受資金及規(guī)模限制,每天最多只能用A種面料68米和B種面料62米生產(chǎn)M、N型兩種服裝共80套.已知M、N型服裝每套所需面料和成本如下表,設(shè)每天生產(chǎn)M型服裝x套.
AB成本
M型1.1m0.4m100元
N型0.6m0.9m80元
(1)若要每天成本不高于7200元,則該廠每天生產(chǎn)M型服裝最多多少套,最少多少套?
(2)經(jīng)市場調(diào)查,生產(chǎn)的M、N型服裝有兩種銷售方案(假設(shè)每天生產(chǎn)的服裝都能全部售出).
方案Ⅰ:兩種型號服裝都在本市銷售,M型180元/件、N型120元/件;
方案Ⅱ:N型服裝在本市銷售,120元/件,M型服裝批發(fā)給H市服裝商,其每件的批發(fā)價y(元)與批量x(件)之間的關(guān)系如圖所示.
如果你是廠長,應(yīng)采用哪種銷售方案可使每天獲利最大,最大利潤是多少?并確定相應(yīng)的生產(chǎn)方案.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx-1經(jīng)過點A(一1,0)、B(m,0)(m>0),且與y軸交于點C
(1)求拋物線對應(yīng)的函數(shù)表達式(用含m的式子表示);
(2)如圖,⊙M經(jīng)過A、B、C三點,求扇形MBC(陰影部分)的面積S(用含m的式子表示);
(3)若拋物線上存在點P,使得△APB△ABC,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(-1,-3.2)及部分圖象(如圖),由圖象可知關(guān)于x的方程ax2+bx+c=0的兩個根分別是x1=1.3和x2=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,如果拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于C點,且OB=OC=
1
2
OA,那么b=______

查看答案和解析>>

同步練習冊答案