【題目】中,垂直平分,分別交、于點,垂直平分,分別交,于點、

⑴如圖①,若,求的度數(shù);

⑵如圖②,若,求的度數(shù);

⑶若,直接寫出用表示大小的代數(shù)式.

【答案】1)∠EAN=44°;(2)∠EAN=16°;(3)當(dāng)0<α<90°時,∠EAN=180°-2α;當(dāng)α>90°時,∠EAN=2α-180°.

【解析】

(1)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AE=BE,再根據(jù)等邊對等角可得∠BAE=B,同理可得,∠CAN=C,然后利用三角形的內(nèi)角和定理求出∠B+C,再根據(jù)∠EAN=BAC-(BAE+CAN)代入數(shù)據(jù)進行計算即可得解;

(2)(1)的思路,最后根據(jù)∠EAN=BAE+CAN-BAC代入數(shù)據(jù)進行計算即可得解;

(3)根據(jù)前兩問的求解,分α<90°與α>90°兩種情況解答.

(1)DE垂直平分AB,

AE=BE,

∴∠BAE=B,

同理可得:∠CAN=C,

∴∠EAN=BAC-BAE-CAN=BAC-(B+C),

在△ABC中,∠B+C=180°-BAC=180°-112°=68°,

∴∠EAN=BAC-(BAE+CAN)=112°-68°=44°;

(2)DE垂直平分AB,

AE=BE,

∴∠BAE=B,

同理可得:∠CAN=C,

∴∠EAN=BAE+CAN-BAC=(B+C)-BAC,

在△ABC中,∠B+C=180°-BAC=180°-82°=98°,

∴∠EAN=BAE+CAN-BAC=98°-82°=16°;

(3)當(dāng)0<α<90°時,

DE垂直平分AB,

AE=BE

∴∠BAE=B,

同理可得:∠CAN=C,

∴∠EAN=BAE+CAN-BAC=(B+C)-BAC,

在△ABC中,∠B+C=180°-BAC=180°-α

∴∠EAN=BAE+CAN-BAC=180°-α-α=180°-2α;

當(dāng)α>90°時,

DE垂直平分AB

AE=BE,

∴∠BAE=B,

同理可得:∠CAN=C,

∴∠EAN=BAC-BAE-CAN=BAC-(B+C)

在△ABC中,∠B+C=180°-BAC=180°-α,

∴∠EAN=BAC-(BAE+CAN)=α-(180°-α)=2α-180°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠A=90°,AB=AC,點DBC的中點.

(1)如圖①,若點E、F分別為AB、AC上的點,且DEDF,求證:BE=AF;

(2)若點E、F分別為AB、CA延長線上的點,且DEDF,那么BE=AF嗎?請利用圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC△ECD都是等邊三角形,B、CD三點在一條直線上,ADBE相交于點O,ADCE相交于點FACBE相交于點G

1△BCE△ACD全等嗎?請說明理由.

2)求∠BOD度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(k>0,x>0)的圖象經(jīng)過菱形OACD的頂點D和邊AC的中點E,若菱形OACD的邊長為3,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, DE AB E DF AC F ,若 BD CD 、 BE CF

1)求證:AD平分BAC

2)已知AC 14,BE 2,求AB的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABx軸交于點C,與y軸交于點B,點A(1,3),點B(0,2).連接AO

(1)求直線AB的解析式;

(2)求三角形AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD垂直平分OA,垂足為點M,連接并延長CO交⊙O于點E,分別連接DE,BE,DB,其中∠EDB=30°,CDE的平分線DNCE于點G,交⊙O于點N,延長CE至點F,使FG=FD.

(1)求證:DF是⊙O的切線;

(2)若⊙O半徑r8,求線段DB,BE與劣弧DE所圍成的陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘船在A處望見燈塔E在北偏東60°方向上,此船沿正東方向航行60海里后到達B處,在B處測得燈塔E在北偏東15°方向上.

(1)求∠AEB的度數(shù);

(2)①求A處到燈塔E的距離AE

②已知燈塔E周圍40海里內(nèi)有暗礁,問:此船繼續(xù)向東方向航行,有無觸礁危險?(參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在小山的東側(cè)A點有一個熱氣球,由于受風(fēng)的影響,以30米/分的速度沿與地面成75°角的方向飛行,25分鐘后到達C處,此時熱氣球上的人測得小山西側(cè)B點的俯角為30°,則小山東西兩側(cè)A,B兩點間的距離為( 。┟祝

A. 750 B. 375 C. 375 D. 750

查看答案和解析>>

同步練習(xí)冊答案