已知:如圖,在平面直角坐標系中,點A,B,C分別在坐標軸上,且OA=OB=OC,△ABC的面積為9,點P從C點出發(fā)沿y軸負方向以1個單位/秒的速度向下運動,連接PA,PB,D(-m,-m)為AC上的點(m>0)
(1)試分別求出A,B,C三點的坐標;
(2)設點P運動的時間為t秒,問:當t為何值時,DP與DB垂直相等?請說明理由;

(3)若PA=AB,在第四象限內有一動點Q,連QA,QB,QP,且∠PQA=60°,當Q在第四象限內運動時,下列說法:
(i)∠APQ+∠PBQ的度數(shù)和不變;
(ii)∠BAP+∠BQP的度數(shù)和不變,其中有且只有一個說法是正確的,請判斷正確的說法,并求這個不變的值.
分析:(1)利用OA=OB=OC,∠AOC=∠BOC=90° 得出∠ACB=90°,再利用△ABC的面積為9,得出OA=OC=OB=3 即可得出各點的坐標;
(2)作DM⊥x軸于點M,作DN⊥y軸于點N,假設出D點的坐標,進而得出△PCD≌△BOD,進而得到∠BDP=∠ODC=90°,即DP⊥DB;
(3)在QA上截取QS=QP,連接PS,利用∠PQA=60°,得出△QSP是等邊三角形,進而得出△APS≌△BPQ,從而得出∠APQ+∠PBQ=∠APQ+∠PAS得出答案.
解答:解:(1)∵OA=OB=OC,∠AOC=∠BOC=90°,
∴∠OAC=∠OCA=∠OBC=∠OCB=45°,
∴∠ACB=90°,
又△ABC的面積為9,
∴OA=OC=OB=3,
∴A(-3,0),B(3,0),C(0,-3);

(2)當t=3秒時,即CP=OC時,DP與DB垂直且相等.
理由如下:連接OD,作DM⊥x軸于點M,作DN⊥y軸于點N,
∵D(-m,-m),
∴DM=DN=OM=ON=m,
∴∠DOM=∠DON=45°,而∠ACO=45°,
∴DC=DO,
∴∠PCD=∠BOD=135°,又CP=OC=OB,
∴△PCD≌△BOD (SAS),
∴DP=DB,∠PDC=∠BDO,
∴∠BDP=∠ODC=90°,
即DP⊥DB.

(3)解:(i)正確.在QA上截取QS=QP,連接PS.
∵∠PQA=60°,
∴△QSP是等邊三角形,
∴PS=PQ,∠SPQ=60°,
∵PO是AB的垂直平分線,
∴PA=PB 而PA=AB,
∴PA=PB=AB,
∴∠APB=60°,
∴∠APS=∠BPQ,
∴△APS≌△BPQ,
∴∠PAS=∠PBQ,
∴∠APQ+∠PBQ=∠APQ+∠PAS=120°.
點評:此題主要考查了全等三角形的判定與性質以及等邊三角形的性質與判定、線段的垂直平分線性質等知識,根據(jù)已知作出正確輔助線從而得出三角形△APS≌△BPQ是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內的點A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對應的一次函數(shù)的解析式以及它與x軸的交點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,原點O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點落在X軸上為點B.有人在線段OB上點C(靠點B一側)豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內.已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內?
(3)當豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個時,乒乓球可以落入桶內?(直接寫出滿足條件的一個答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖1,在平面直角坐標系內,直線l1:y=-x+4與坐標軸分別相交于點A、B,與直線l2y=
13
x
相交于點C.
(1)求點C的坐標;
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆重慶萬州區(qū)巖口復興學校九年級下第一次月考數(shù)學試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點A坐標為(3 ,4). 點P從原點O開始以2個單位/秒速度沿x軸正向運動 ;同時,一條平行于x軸的直線從AC開始以1個單位/秒速度豎直向下運動 ,交OA于點D,交OC于點M,交BC于點E. 當點P到達點B時,直線也隨即停止運動.

(1)求出點C的坐標;
(2)在這一運動過程中, 四邊形OPEM是什么四邊形?請說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關于t的函數(shù)關系式及t的
范圍;并求出當四邊形OPEM的面積y的最大值?
(3)在整個運動過程中,是否存在某個t值,使⊿MPB為等腰三角形?
若有,請求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年浙江省湖州市中考數(shù)學模擬試卷(十一)(解析版) 題型:解答題

如圖,在平面直角坐標系中,原點O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點落在X軸上為點B.有人在線段OB上點C(靠點B一側)豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內.已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內?
(3)當豎直擺放圓柱形桶______個時,乒乓球可以落入桶內?(直接寫出滿足條件的一個答案)

查看答案和解析>>

同步練習冊答案