【題目】如圖1,在△ABC中,∠B=60°,點(diǎn)M從點(diǎn)B出發(fā)沿射線BC方向,在射線BC上運(yùn)動(dòng).在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,連結(jié)AM,并以AM為邊在射線BC上方,作等邊△AMN,連結(jié)CN.
(1)當(dāng)∠BAM= °時(shí),AB=2BM;
(2)請(qǐng)?zhí)砑右粋(gè)條件: ,使得△ABC為等邊三角形;
①如圖1,當(dāng)△ABC為等邊三角形時(shí),求證:CN+CM=AC;
②如圖2,當(dāng)點(diǎn)M運(yùn)動(dòng)到線段BC之外(即點(diǎn)M在線段BC的延長(zhǎng)線上時(shí)),其它條件不變(△ABC仍為等邊三角形),請(qǐng)寫(xiě)出此時(shí)線段CN、CM、AC滿足的數(shù)量關(guān)系,并證明.
【答案】(1)30;(2)AB=AC;①證明見(jiàn)解析;②CN-CM=AC,理由見(jiàn)解析
【解析】
(1)根據(jù)含30°角的直角三角形的性質(zhì)解答即可;
(2)利用含一個(gè)60°角的等腰三角形是等邊三角形的判定解答;①利用等邊三角形的性質(zhì)和全等三角形的判定證明△BAM≌△CAN,從而利用全等三角形的性質(zhì)求解;②利用等邊三角形的性質(zhì)和全等三角形的判定證明△BAM≌△CAN,從而利用全等三角形的性質(zhì)求解.
解:(1)當(dāng)∠BAM=30°時(shí),
∴∠AMB=180°﹣60°﹣30°=90°,
∴AB=2BM;
故答案為:30;
(2)∵在△ABC中,∠B=60°
∴當(dāng)AB=AC時(shí),可得可得△ABC為等邊三角形;
故答案為:AB=AC;
①如圖1中,
∵△ABC與△AMN是等邊三角形,
∴AB=AC=BC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,
即∠BAM=∠CAN,
在△BAM與△CAN中, ,
∴△BAM≌△CAN(SAS),
∴BM=CN;
∴AC=BC=BM+CM=CM+CN
即CN+CM=AC;
②CN-CM=AC,
理由:如圖2中,
∵△ABC與△AMN是等邊三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAC+∠MAC=∠MAN+∠MAC,
即∠BAM=∠CAN,
在△BAM與△CAN中, ,
∴△BAM≌△CAN(SAS),
∴BM=CN
∴AC=BC=BM-CM=CN-CM
即CN-CM=AC
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,≌,≌,B,E,C在一條直線上下列結(jié)論:是的平分線;;;線段DE是的中線;其中正確的有 ()個(gè).
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為積極響應(yīng)新舊動(dòng)能轉(zhuǎn)換.提高公司經(jīng)濟(jì)效益.某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺(tái)設(shè)備成本價(jià)為30萬(wàn)元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),每臺(tái)售價(jià)為40萬(wàn)元時(shí),年銷(xiāo)售量為600臺(tái);每臺(tái)售價(jià)為45萬(wàn)元時(shí),年銷(xiāo)售量為550臺(tái).假定該設(shè)備的年銷(xiāo)售量y(單位:臺(tái))和銷(xiāo)售單價(jià)(單位:萬(wàn)元)成一次函數(shù)關(guān)系.
(1)求年銷(xiāo)售量與銷(xiāo)售單價(jià)的函數(shù)關(guān)系式;
(2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷(xiāo)售單價(jià)不得高于70萬(wàn)元,如果該公司想獲得10000萬(wàn)元的年利潤(rùn).則該設(shè)備的銷(xiāo)售單價(jià)應(yīng)是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB上一點(diǎn),過(guò)D點(diǎn)作AB垂線,交AC于E,交BC的延長(zhǎng)線于F.
(1)∠1與∠B有什么關(guān)系?說(shuō)明理由.
(2)若BC=BD,請(qǐng)你探索AB與FB的數(shù)量關(guān)系,并且說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,點(diǎn)B、F、C、E在同一直線上,AC、DF相交于點(diǎn)G,AB⊥BE,垂足為B,DE⊥BE,垂足為E,且AC=DF,BF=EC.求證:
(1)△ABC≌△DEF;
(2)FG=CG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題10分)閱讀材料:分解因式:
解:
=
=
=
=
=,
此種方法抓住了二次項(xiàng)和一次項(xiàng)的特點(diǎn),然后加一項(xiàng),使三項(xiàng)成為完全平方式,我們把這種分解因式的方法叫配方法.
(1)用上述方法分解因式:;
(2)無(wú)論取何值,代數(shù)式總有一個(gè)最小值,請(qǐng)嘗試用配方法求出當(dāng)取何值時(shí)代數(shù)式的值最小,并求出這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面一元二次方程的解法中,正確的是( )
A. (x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B. (2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=
C. (x+2)2+4x=0,∴x1=2,x2=-2
D. x2=x 兩邊同除以x,得x=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EF、GH(線段端點(diǎn)在格點(diǎn)上),
⑴選取其中三條線段,使得這三條線段能?chē)梢粋(gè)直角三角形.
答:選取的三條線段為 .
⑵只變動(dòng)其中兩條線段的位置,在原圖中畫(huà)出一個(gè)滿足上題的直角三角形(頂點(diǎn)仍在格點(diǎn),并標(biāo)上必要的字母).
答:畫(huà)出的直角三角形為△ .
⑶所畫(huà)直角三角形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB、CD邊于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)求證:△ADE≌△CBF;
(3)當(dāng)四邊形BEDF是菱形時(shí),直接寫(xiě)出線段EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com