【題目】如圖,在11×11的正方形網(wǎng)格中,△TAB的頂點(diǎn)分別為T(1,1),A(2,3),B(4,2).
(1)以點(diǎn)T(1,1)為位似中心,按比例尺(TA′:TA)3:1,在位似中心的同側(cè)將△TAB放大為△TA′B′,放大后點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為A′,B′,畫(huà)出△TA′B′,并寫(xiě)出點(diǎn)A′,B′的坐標(biāo);點(diǎn)A′的坐標(biāo)為 ,點(diǎn)B′的坐標(biāo)為
(2)在(1)中,若C(a,b)為線(xiàn)段AB上任一點(diǎn),寫(xiě)出變化后點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為 .
【答案】(1)見(jiàn)解析;(2)C′(3a-2,3b-2).
【解析】
(1)根據(jù)題目的敘述,在位似中心的同側(cè)將△TAB放大為原來(lái)的3倍,得到對(duì)應(yīng)點(diǎn)坐標(biāo),正確地作出圖形即可,根據(jù)圖象確定各點(diǎn)的坐標(biāo)即可.
(2)根據(jù)(1)中變換的規(guī)律,即可寫(xiě)出變化后點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo).
解:(1)如圖所示:
點(diǎn)A′,B′的坐標(biāo)分別為:A′(4,7),B′(10,4);
故答案為:4,7;10,4;
(2)變化后點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為:C′(3a-2,3b-2)
故答案為:3a-2,3b-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿CA方向運(yùn)動(dòng),速度是2cm/s,動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC方向運(yùn)動(dòng),速度是1cm/s.
(1)幾秒后P,Q兩點(diǎn)相距25cm?
(2)幾秒后△PCQ與△ABC相似?
(3)設(shè)△CPQ的面積為S1,△ABC的面積為S2,在運(yùn)動(dòng)過(guò)程中是否存在某一時(shí)刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,米,米,動(dòng)點(diǎn)以米/秒的速度從點(diǎn)出發(fā),沿向點(diǎn)移動(dòng).同時(shí),動(dòng)點(diǎn)以米/秒的速度從點(diǎn)出發(fā),沿向點(diǎn)移動(dòng).當(dāng)其中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止移動(dòng).設(shè)移動(dòng)的時(shí)間為秒.
(1)①當(dāng)秒時(shí),求的面積;
②求的面積(米)關(guān)于時(shí)間(秒)的函數(shù)表達(dá)式.
(2)在點(diǎn)移動(dòng)的過(guò)程中,當(dāng)為何值時(shí),為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代第一部自成體系的數(shù)學(xué)專(zhuān)著,代表了東方數(shù)學(xué)的最高成就.它的算法體系至今仍在推動(dòng)著計(jì)算機(jī)的發(fā)展和應(yīng)用.書(shū)中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長(zhǎng)1尺(AB=1尺=10寸)”,問(wèn)這塊圓形木材的直徑是多少?”
如圖所示,請(qǐng)根據(jù)所學(xué)知識(shí)計(jì)算:圓形木材的直徑AC是( )
A. 13寸 B. 20寸 C. 26寸 D. 28寸
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,矩形ABCD中,AD=6,DC=7,菱形EFGH的三個(gè)頂點(diǎn)E,G,H分別在矩形ABCD的邊AB,CD,DA上,AH=2,連接CF.
(1)若DG=2,求證四邊形EFGH為正方形;
(2)若DG=6,求△FCG的面積;
(3)當(dāng)DG為何值時(shí),△FCG的面積最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)矩形OABC對(duì)角線(xiàn)的交點(diǎn)M,分別與AB、BC相交于點(diǎn)D、E.若四邊形ODBE的面積為9,則k的值為( )
A. 3B. 6C. 9D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列一組方程:;;;;它們的根有一定的規(guī)律,都是兩個(gè)連續(xù)的自然數(shù),我們稱(chēng)這類(lèi)一元二次方程為“連根一元二次方程”.
若也是“連根一元二次方程”,寫(xiě)出k的值,并解這個(gè)一元二次方程;
請(qǐng)寫(xiě)出第n個(gè)方程和它的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將長(zhǎng)方形ABCD沿著對(duì)角線(xiàn)BD折疊,使點(diǎn)C落在處,交AD于點(diǎn)E.
(1)試判斷△BDE的形狀,并說(shuō)明理由;
(2)若,,求△BDE的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com