【題目】如圖,梯形ABCD中,,且AD3,對角線ACBD交于點O,那么______

【答案】193

【解析】

先根據(jù)ADBC,可判定△AOD∽△COB, 由于AD:BC=1:3,可得OD:OB=AD:BC=1:3,根據(jù)等高的兩個三角形,兩個三角形的面積比等于對應(yīng)的底邊之比,可得SAOD:SAOB=1:3,再根據(jù)相似三角形的面積比等于相似比的平方倍可得SAOD:SBOC=1:9.

∵梯形ABCD,ADBC,

∴△AOD∽△COB,

AD:BC=1:3,

OD:OB=AD:BC=1:3,

SAOD:SAOB=1:3,

SAOD:SBOC=1:9,

SAOD:SBOC:SAOB =1:9:3,

故答案為:1:9:3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC 中,∠ABC=63°,點 DE 分別是△ABC 的邊BC,AC 上的點,且 AB=AD=DE=EC,則∠C 的度數(shù)是(

A.21°B.19°C.18°D.17°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在ABCD中,對角線ACBD相交于點O,AOB是等邊三角形,AB=4,求ABCD的面積.

(2)如圖2,在ABC中,∠B=90°,A=30°,D是邊AB上一點,∠BDC=45°,AD=4,求BC的長(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圖所示的平面直角坐標系中表示下面各點:

A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(xiàn)(5,7)。

(1)A點到原點O的距離是__ __個單位長。

(2)將點C向左平移6個單位,它會與點 重合。

(3)連接CE,則直線CE與y軸是什么位置關(guān)系?

(4)點F到x、y軸的距離分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,ABAC3cm,∠B30°,點DBC邊上由CB勻速運動(D不與B、C重合),勻速運動速度為1cm/s,連接AD,作∠ADE30°,DE交線段AC于點E

1)在此運動過程中,∠BDA逐漸變   (填“大”或“小”);D點運動到圖1位置時,∠BDA75°,則∠BAD   

2)點D運動3s后到達圖2位置,則CD   .此時△ABD和△DCE是否全等,請說明理由;

3)在點D運動過程中,△ADE的形狀也在變化,判斷當△ADE是等腰三角形時,∠BDA等于多少度(請直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形的每一個內(nèi)角都相等,并且每個外角都等于和它相鄰的內(nèi)角的一半.

1)求這個多邊形是幾邊形;

2)求這個多邊形的內(nèi)角和

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動課上,小明提出這樣一個問題:∠B=∠C90°EBC的中點,DE平分∠ADC,∠CDE55°.如圖,則∠EAB的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x1≤x≤90)天的售價與銷售量的相關(guān)信息如下表:

時間x(天)

1≤x50

50≤x≤90

售價(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進價為每件30元,設(shè)銷售該商品的每天利潤為y[

1)求出yx的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?

3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,ACB=90°,A=30°,AC=6,BC的中點為D,ABC繞點C順時針旋轉(zhuǎn)任意一個角度得到FEC,EF的中點為G,連接DG在旋轉(zhuǎn)過程中,DG的最大值是_______.

查看答案和解析>>

同步練習(xí)冊答案