【題目】如圖,拋物線C1:y=x2+bx+c經(jīng)過(guò)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為(2,0),將拋物線C1向右平移m(m>0)個(gè)單位得到拋物線C2,C2交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),交y軸于點(diǎn)C.
(1)求拋物線C1的解析式及頂點(diǎn)坐標(biāo);
(2)以AC為斜邊向上作等腰直角三角形ACD,當(dāng)點(diǎn)D落在拋物線C2的對(duì)稱軸上時(shí),求拋物線C2的解析式;
(3)若拋物線C2的對(duì)稱軸存在點(diǎn)P,使△PAC為等邊三角形,求m的值.
【答案】(1)拋物線C1的解析式為y=x2﹣2x,頂點(diǎn)坐標(biāo)(1,﹣1);
(2)拋物線C2的解析式為:y=(x﹣2)2﹣1;
(3)m=.
【解析】試題分析:(1)把(0,0)及(2,0)代入y=x2+bx+c,求出拋物線C1的解析式,即可求出拋物線C1的頂點(diǎn)坐標(biāo),
(2)先求出C2的解析式,確定A,B,C的坐標(biāo),過(guò)點(diǎn)C作CH⊥對(duì)稱軸DE,垂足為H,利用△PAC為等腰直角三角形,求出角的關(guān)系可證得△CHD≌△DEA,再由OC=EH列出方程求解得出m的值,即可得出C2的解析式.
(3)連接BC,BP,由拋物線對(duì)稱性可知AP=BP,由△PAC為等邊三角形,可得AP=BP=CP,∠APC=60°,由C,A,B三點(diǎn)在以點(diǎn)P為圓心,PA為半徑的圓上,可得BC=2OC,利用勾股定理求出OB=OC,列出方程求出m的值即可.
試題解析:(1)∵拋物線C1經(jīng)過(guò)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為(2,0),
∴,
解得,
∴拋物線C1的解析式為y=x2﹣2x,
∴拋物線C1的頂點(diǎn)坐標(biāo)(1,﹣1),
(2)如圖1,
∵拋物線C1向右平移m(m>0)個(gè)單位得到拋物線C2,
∴C2的解析式為y=(x﹣m﹣1)2﹣1,
∴A(m,0),B(m+2,0),C(0,m2+2m),
過(guò)點(diǎn)C作CH⊥對(duì)稱軸DE,垂足為H,
∵△ACD為等腰直角三角形,
∴AD=CD,∠ADC=90°,
∴∠CDH+∠ADE=90°
∴∠HCD=∠ADE,
∵∠DEA=90°,
∴△CHD≌△DEA,
∴AE=HD=1,CH=DE=m+1,
∴EH=HD+DE=1+m+1=m+2,
由OC=EH得m2+2m=m+2,解得m1=1,m2=﹣2(舍去),
∴拋物線C2的解析式為:y=(x﹣2)2﹣1.
(3)如圖2,連接BC,BP,
由拋物線對(duì)稱性可知AP=BP,
∵△PAC為等邊三角形,
∴AP=BP=CP,∠APC=60°,
∴C,A,B三點(diǎn)在以點(diǎn)P為圓心,PA為半徑的圓上,
∴∠CBO=∠CPA=30°,
∴BC=2OC,
∴由勾股定理得OB==OC,
∴(m2+2m)=m+2,
解得m1=,m2=﹣2(舍去),
∴m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,二次函數(shù)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn), A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC ,tan∠ACO=.
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)經(jīng)過(guò)C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度;
(4)如圖2,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛(ài)的交通工具.某運(yùn)動(dòng)商城的自行車銷售量自2017年起逐月增加,據(jù)統(tǒng)計(jì),該商城1月份銷售自行車64輛,3月份銷售了100輛.
(1)若該商城前4個(gè)月的自行車銷量的月平均增長(zhǎng)率相同,問(wèn)該商城4月份賣出多少輛自行車?
(2)考慮到自行車需求不斷增加,該商城準(zhǔn)備投入3萬(wàn)元再購(gòu)進(jìn)一批兩種規(guī)格的自行車,已知A型車的進(jìn)價(jià)為500元/輛,售價(jià)為700元/輛,B型車進(jìn)價(jià)為1000元/輛,售價(jià)為1300元/輛.根據(jù)銷售經(jīng)驗(yàn),A型車不少于B型車的2倍,但不超過(guò)B型車的2.8倍.假設(shè)所進(jìn)車輛全部售完,為使利潤(rùn)最大,該商城應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的倒數(shù)和等于0?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①所有無(wú)理數(shù)都是無(wú)限不循環(huán)小數(shù);②數(shù)軸上的所有點(diǎn)與有理數(shù)一一對(duì)應(yīng);③任意一個(gè)無(wú)理數(shù)的絕對(duì)值都是正數(shù);④平方根與立方根都等于它本身的數(shù)為0和1,其中,正確的個(gè)數(shù)是( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】桂林市某氣象站測(cè)得六月份一周七天的降雨量分別為0,32,11,45,8,51,27(單位:mm),這組數(shù)據(jù)的極差是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com