【題目】如圖,點(diǎn)A,B在反比例函數(shù)y=(x0)的圖象上,點(diǎn)CD在反比例函數(shù)y=(x0)的圖象上,.,已知點(diǎn)A,B的橫坐標(biāo)分別為12,△OAC與△ABD的面積之和為3,則k的值為(  )

A.5B.4C.3D.

【答案】A

【解析】

先求出點(diǎn)A,B的坐標(biāo),再根據(jù)ACBDy軸,確定點(diǎn)C,點(diǎn)D的坐標(biāo),求出ACBD,最后根據(jù),△OAC與△ABD的面積之和為3,即可解答.

解:∵點(diǎn)AB在反比例函數(shù)y=x0)的圖象上,點(diǎn)AB的橫坐標(biāo)分別為1,2

∴點(diǎn)A的坐標(biāo)為(1,1),點(diǎn)B的坐標(biāo)為(2),
ACBDy軸,
∴點(diǎn)C,D的橫坐標(biāo)分別為1,2
∵點(diǎn)C,D在反比例函數(shù)y=k0)的圖象上,
∴點(diǎn)C的坐標(biāo)為(1,k),點(diǎn)D的坐標(biāo)為(2,),
AC=k-1,BD=
SOAC=k-1)×1=,SABD=×(2-1=
∵△OAC與△ABD的面積之和為3,
+=3
解得:k=5
故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一盛有不足半杯水的圓柱形玻璃水杯擰緊杯蓋后放倒,水平放置在桌面上,水杯的底面如圖所示,已知水杯內(nèi)徑(圖中小圓的直徑)是8cm,水的最大深度是2cm,則杯底有水部分的面積是( 。

A.π4cm2B.π8cm2

C.π4cm2D.π2cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn) M 的坐標(biāo)為(4,3),點(diǎn) M 關(guān)于直線 ly=﹣x+b 的對稱點(diǎn)落在坐標(biāo)軸上,則 b的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市在黨中央實施精準(zhǔn)扶貧政策的號召下,大力開展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過100萬件,該產(chǎn)品的生產(chǎn)費(fèi)用y(萬元)與年產(chǎn)量x(萬件)之間的函數(shù)圖象是頂點(diǎn)為原點(diǎn)的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷售完,達(dá)到產(chǎn)銷平衡,所獲毛利潤為w萬元.(毛利潤=銷售額﹣生產(chǎn)費(fèi)用)

(1)請直接寫出yx以及zx之間的函數(shù)關(guān)系式;

(2)求wx之間的函數(shù)關(guān)系式;并求年產(chǎn)量多少萬件時,所獲毛利潤最大?最大毛利潤是多少?

(3)由于受資金的影響,今年投入生產(chǎn)的費(fèi)用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店銷售AB兩種型號的新能源汽車.上周售出1A型車和3B型車,兩種車型的銷售總額為96萬元;本周銷售2A型車和1B型車,兩種車型的銷售總額為62萬元,已知兩種型號汽車銷售價格始終不變.

1)求AB兩種車型的銷售單價分別是多少?

2)第三周計劃售出AB兩種型號的車共5輛,若銷售總額不少于100萬元,則B型車至少要售出多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,O是線段BC上一點(diǎn),以O為圓心,OC為半徑作OABO相切于點(diǎn)F,直線AOO于點(diǎn)ED

1)求證:AO是△CAB的角平分線;

2)若tanD=AE=2,求AC的長.

3)在(2)條件下,連接CFAD于點(diǎn)G,O的半徑為3,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1kx+b與反比例函數(shù)y2的圖象交于A23),B6,n)兩點(diǎn),與x軸、y軸分別交于CD兩點(diǎn).

1)求一次函數(shù)與反比例函數(shù)的解析式.

2)求當(dāng)x為何值時,y10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ADBCBAADDC,點(diǎn)ECB延長線上,BEAD,連接ACAE

求證:AEAC;

ABAC FBC的中點(diǎn),試判斷四邊形AFCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AC,BC是⊙O的兩條弦,過點(diǎn)C作∠BCD=∠A,CDAB的延長線于點(diǎn)D

1)試說明:CD是⊙O的切線;

2)若tanA,求的值;

3)在(2)的條件下,若AB7,DE平分∠ADCAC于點(diǎn)E,求ED的長.

查看答案和解析>>

同步練習(xí)冊答案