初三(5)班綜合實踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學(xué)進行如下測量,B點在A點北偏東60°方向,C點在B點北偏東45°方向,C點在D點正東方向,且測得AB=20米,BC=40米,求AD的長.(≈1.732,≈1.414,結(jié)果精確到0.01米)

【答案】分析:過點B作BE⊥DA,BF⊥DC,垂足分別為E、F,已知AD=AE+ED,則分別求得AE、DE的長即可求得AD的長.
解答:解:過點B作BE⊥DA,BF⊥DC,垂足分別為E,F(xiàn),
由題意知,AD⊥CD
∴四邊形BFDE為矩形
∴BF=ED
在Rt△ABE中,AE=AB•cos∠EAB
在Rt△BCF中,BF=BC•cos∠FBC
∴AD=AE+BF=20•cos60°+40•cos45°
=20×+40×=10+20
=10+20×1.414
=38.28(米).
即AD=38.28米.
點評:解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)初三(5)班綜合實踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學(xué)進行如下測量,B點在A點北偏東60°方向,C點在B點北偏東45°方向,C點在D點正東方向,且測得AB=20米,BC=40米,求AD的長.(
3
≈1.732,
2
≈1.414,結(jié)果精確到0.01米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

初三(5)班綜合實踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學(xué)進行如下測量,B點在A點北偏東60°方向,C點在B點北偏東45°方向,C點在D點正東方向,且測得AB=20米,BC=40米,求AD的長.(數(shù)學(xué)公式≈1.732,數(shù)學(xué)公式≈1.414,結(jié)果精確到0.01米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第7章《銳角三角函數(shù)》中考題集(48):7.6 銳角三角函數(shù)的簡單應(yīng)用(解析版) 題型:解答題

初三(5)班綜合實踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學(xué)進行如下測量,B點在A點北偏東60°方向,C點在B點北偏東45°方向,C點在D點正東方向,且測得AB=20米,BC=40米,求AD的長.(≈1.732,≈1.414,結(jié)果精確到0.01米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第1章《解直角三角形》中考題集(44):1.3 解直角三角形(解析版) 題型:解答題

初三(5)班綜合實踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學(xué)進行如下測量,B點在A點北偏東60°方向,C點在B點北偏東45°方向,C點在D點正東方向,且測得AB=20米,BC=40米,求AD的長.(≈1.732,≈1.414,結(jié)果精確到0.01米)

查看答案和解析>>

同步練習(xí)冊答案