【題目】已知拋物線y=﹣﹣15有最高點(diǎn)(0,1),過(guò)點(diǎn)C(0,2)的直線l平行于x軸,O為坐標(biāo)原點(diǎn).
(1)求m的值;
(2)求證:該拋物線上的任意一點(diǎn)到原點(diǎn)O的距離都等于這個(gè)點(diǎn)到直線l的距離;
(3)若點(diǎn)P,Q是拋物線上的任意兩點(diǎn),且PQ=9,點(diǎn)G是線段PQ的中點(diǎn),求點(diǎn)G到直線l距離的最小值.
【答案】(1)m=4;(2)見解析;(3)4.5
【解析】
(1)由拋物線的頂點(diǎn)坐標(biāo)為(0,1),可得m的值;
(2)設(shè)拋物線上的任意一點(diǎn)M(),則OM=,過(guò)點(diǎn)M作MN⊥l于N,可得MN==OM,則結(jié)論得證;
(3)過(guò)點(diǎn)Q作QA⊥l于A,過(guò)點(diǎn)P作PB⊥l于B交l′于D,取DQ中點(diǎn)E,連接GE并延長(zhǎng)交l于F,可得GF=(AQ+BP),則GF=(OQ+OP),當(dāng)點(diǎn)O,P,Q在同一直線上時(shí),OQ+OP最小,求出點(diǎn)G到直線l距離的最小值為4.5.
(1)∵拋物線的最高點(diǎn)為(0,1),
∴,
解得:m=4;
(2)由(1)得拋物線的解析式為,
設(shè)拋物線上的任意一點(diǎn)M(),
則OM=
=
=
=,
過(guò)點(diǎn)M作MN⊥l于N,則MN==OM,
∴拋物線上的任意一點(diǎn)到原點(diǎn)O的距離都等于這個(gè)點(diǎn)到直線l的距離;
(3)將直線l向下平移,使其經(jīng)過(guò)點(diǎn)Q,設(shè)平移后的直線為l′,
如圖,過(guò)點(diǎn)Q作QA⊥l于A,過(guò)點(diǎn)P作PB⊥l于B交l′于D,取DQ中點(diǎn)E,連接GE并延長(zhǎng)交l于F,
∵EG是△QDP的中位線,
∴GE∥DP,且EG=,
∴GE⊥l′,
易證:EF=AQ=BD,
∴GF=EF+EG=(AQ+BD+DP),
=(AQ+BP),
由(2)得:AQ=OQ,BP=OP
∴GF=(OQ+OP),
∵當(dāng)點(diǎn)O,P,Q在同一直線上時(shí),OQ+OP最小,且最小值等于PQ=9,
∴,
∴點(diǎn)G到直線l距離的最小值為4.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)去年種植了10畝地的南瓜,畝產(chǎn)量為2000,根據(jù)市場(chǎng)需要,今年該農(nóng)場(chǎng)擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,已知南瓜種植面積的增長(zhǎng)率是畝產(chǎn)量的增長(zhǎng)率的2倍,今年南瓜的總產(chǎn)量為60 000kg,求南瓜畝產(chǎn)量的增長(zhǎng)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1矩形ABCD中,點(diǎn)E是CD邊上的動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)C,D重合),連接AE,過(guò)點(diǎn)A作AF⊥AE交CB延長(zhǎng)線于點(diǎn)F,連接EF,點(diǎn)G為EF的中點(diǎn),連接BG.
(1)求證:△ADE∽△ABF;
(2)若AB=20,AD=10,設(shè)DE=x,點(diǎn)G到直線BC的距離為y.
①求y與x的函數(shù)關(guān)系式;②當(dāng)時(shí),x的值為 ;
(3)如圖2,若AB=BC,設(shè)四邊形ABCD的面積為S,四邊形BCEG的面積為S1,當(dāng)時(shí),DE:DC的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了讓同學(xué)們了解自己的體育水平,八年級(jí)班的體育老師對(duì)全班名學(xué)生進(jìn)行了一次體育模擬測(cè)試(得分均為整數(shù)),成績(jī)滿分為分,班的體育委員根據(jù)這次測(cè)試成績(jī),制作了統(tǒng)計(jì)圖和分析表如下:
八年級(jí)班全體女生體育測(cè)試成績(jī)分布扇形統(tǒng)計(jì)圖
八年級(jí)全體男生體育測(cè)試成績(jī)條形統(tǒng)計(jì)圖
八年級(jí)班體育模擬測(cè)試成績(jī)分析表
根據(jù)以上信息,解答下列問題:
(1)這個(gè)班共有男生 人,共有女生 人;
(2)補(bǔ)全八年級(jí)班體育模擬測(cè)試成績(jī)分析表;
(3)你認(rèn)為在這次體育測(cè)試中,班的男生隊(duì),女生隊(duì)哪個(gè)表現(xiàn)更突出一些?并寫出你的看法的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的頂點(diǎn)A,B,C的坐標(biāo)分別是A(﹣1,﹣1),B(﹣4,﹣1),C(﹣4,﹣3).
(1)作出△ABC關(guān)于原點(diǎn)O中心對(duì)稱的圖形△A1B1C1,并寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo);
(2)作出△A1B1C1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的圖形△A2B2C2,并寫出點(diǎn)C1的對(duì)應(yīng)點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點(diǎn)D是AC邊上一動(dòng)點(diǎn),連接BD,以AD為直徑的圓交BD于點(diǎn)E,則線段CE長(zhǎng)度的最小值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)放假期間,小明和小華準(zhǔn)備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山民居(記為C)、李莊古鎮(zhèn)(記為D)的一個(gè)景點(diǎn)去游玩,他們各自在這四個(gè)景點(diǎn)中任選一個(gè),每個(gè)景點(diǎn)都被選中的可能性相同.
(1)小明選擇去蜀南竹海旅游的概率為 .
(2)用樹狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,∠BAC>90°,點(diǎn)D為BC的中點(diǎn),點(diǎn)E在AC上,將△CDE沿DE折疊,使得點(diǎn)C恰好落在BA的延長(zhǎng)線上的點(diǎn)F處,連結(jié)AD,則下列結(jié)論不一定正確的是( 。
A. AE=EF B. AB=2DE
C. △ADF和△ADE的面積相等 D. △ADE和△FDE的面積相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為邊AC上的點(diǎn),以AD為直徑作⊙O,連接BD并延長(zhǎng)交⊙O于點(diǎn)E,連接CE.
(1)若CE=BC,求證:CE是⊙O的切線.
(2)在(1)的條件下,若CD=2,BC=4,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com