(2009•山西)某批發(fā)市場批發(fā)甲、乙兩種水果,根據(jù)以往經(jīng)驗(yàn)和市場行情,預(yù)計(jì)夏季某一段時(shí)間內(nèi),甲種水果的銷售利潤y(萬元)與進(jìn)貨量x(噸)近似滿足函數(shù)關(guān)系y=0.3x;乙種水果的銷售利潤y(萬元)與進(jìn)貨量x(噸)近似滿足函數(shù)關(guān)系y=ax2+bx(其中a≠0,a,b為常數(shù)),且進(jìn)貨量x為1噸時(shí),銷售利潤y為1.4萬元;進(jìn)貨量x為2噸時(shí),銷售利潤y為2.6萬元.
(1)求y(萬元)與x(噸)之間的函數(shù)關(guān)系式.
(2)如果市場準(zhǔn)備進(jìn)甲、乙兩種水果共10噸,設(shè)乙種水果的進(jìn)貨量為t噸,請你寫出這兩種水果所獲得的銷售利潤之和W(萬元)與t(噸)之間的函數(shù)關(guān)系式.并求出這兩種水果各進(jìn)多少噸時(shí)獲得的銷售利潤之和最大,最大利潤是多少?
【答案】分析:(1)根據(jù)題意列出二元一次方程組,求出a、b的值即可求出函數(shù)關(guān)系式的解.
(2)已知w=y+y=0.3(10-t)+(-0.1t2+1.5t),用配方法化簡函數(shù)關(guān)系式即可求出w的最大值.
解答:解:
(1)由題意,得:解得(2分)
∴y=-0.1x2+1.5x.(3分)

(2)W=y+y=0.3(10-t)+(-0.1t2+1.5t)
∴W=-0.1t2+1.2t+3.(5分)
W=-0.1(t-6)2+6.6.∴t=6時(shí),W有最大值為6.6.(7分)
∴10-6=4(噸).
答:甲、乙兩種水果的進(jìn)貨量分別為4噸和6噸時(shí),獲得的銷售利潤之和最大,最大利潤是6.6萬元.(8分)
點(diǎn)評:本題考查學(xué)生利用二次函數(shù)解決實(shí)際問題的能力,注意二次函數(shù)的最大值往往要通過頂點(diǎn)坐標(biāo)來確定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(07)(解析版) 題型:解答題

(2009•山西)有一水庫大壩的橫截面是梯形ABCD,AD∥BC,EF為水庫的水面,點(diǎn)E在DC上,某課題小組在老師的帶領(lǐng)下想測量水的深度,他們測得背水坡AB的長為12米,迎水坡上DE的長為2米,∠BAD=135°,∠ADC=120°,求水深.(精確到0.1米,=1.41,=1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2009•山西)某批發(fā)市場批發(fā)甲、乙兩種水果,根據(jù)以往經(jīng)驗(yàn)和市場行情,預(yù)計(jì)夏季某一段時(shí)間內(nèi),甲種水果的銷售利潤y(萬元)與進(jìn)貨量x(噸)近似滿足函數(shù)關(guān)系y=0.3x;乙種水果的銷售利潤y(萬元)與進(jìn)貨量x(噸)近似滿足函數(shù)關(guān)系y=ax2+bx(其中a≠0,a,b為常數(shù)),且進(jìn)貨量x為1噸時(shí),銷售利潤y為1.4萬元;進(jìn)貨量x為2噸時(shí),銷售利潤y為2.6萬元.
(1)求y(萬元)與x(噸)之間的函數(shù)關(guān)系式.
(2)如果市場準(zhǔn)備進(jìn)甲、乙兩種水果共10噸,設(shè)乙種水果的進(jìn)貨量為t噸,請你寫出這兩種水果所獲得的銷售利潤之和W(萬元)與t(噸)之間的函數(shù)關(guān)系式.并求出這兩種水果各進(jìn)多少噸時(shí)獲得的銷售利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年山西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•山西)有一水庫大壩的橫截面是梯形ABCD,AD∥BC,EF為水庫的水面,點(diǎn)E在DC上,某課題小組在老師的帶領(lǐng)下想測量水的深度,他們測得背水坡AB的長為12米,迎水坡上DE的長為2米,∠BAD=135°,∠ADC=120°,求水深.(精確到0.1米,=1.41,=1.73)

查看答案和解析>>

同步練習(xí)冊答案