【題目】有如下一串二次根式:

;;

(1)求①,,④的值;

(2)仿照①,,,寫出第⑤個(gè)二次根式;

(3)仿照①,,,,寫出第n個(gè)二次根式,并化簡

【答案】(1)3;15;35;63;(2)99;(3)(2n1)(2n1)

【解析】試題分析:

1)根據(jù)平方差公式,把每個(gè)式子中的被開方數(shù)分解為兩個(gè)因數(shù)的積,再按照進(jìn)行化簡即可;

2)觀察、分析(1中四個(gè)式子化簡變形的過程可知,這些式子變形后最后所得的二次根式的被開方數(shù)是: ,其中為正整數(shù),將這個(gè)式子化為兩個(gè)式子的平方差的形式為: ,由此即可寫出第5個(gè)式子,再化簡即可;

32可知第n個(gè)式子的被開方數(shù)為: ,由此即可寫出第n個(gè)式子,再按前面的方法化簡即可.

試題解析

1;

;

;

2)觀察(1)中式子可得:第5個(gè)式子為: ,化簡得:

;

3觀察、分析前面5個(gè)式子可知,上述二次根式化簡后所得的二次根式的被開方數(shù)可表示為:

,

n個(gè)式子為: ,化簡得:

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】α和β互補(bǔ),且∠α>∠β,則下列表示β的余角的式子有:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β),其中錯(cuò)誤的有( 。﹤(gè)

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為原點(diǎn),已知數(shù)軸上點(diǎn)A和點(diǎn)B所表示的數(shù)分別為﹣10和6,動點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長度的速度沿?cái)?shù)軸正方向勻速運(yùn)動,同時(shí)動點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位的速度沿?cái)?shù)軸負(fù)方向勻速運(yùn)動,設(shè)運(yùn)動時(shí)間為t(t>0)秒

(1)當(dāng)t=2時(shí),求AP的中點(diǎn)C所對應(yīng)的數(shù);

(2)當(dāng)PQ=OA時(shí),求點(diǎn)Q所對應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6張小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內(nèi),未被覆蓋的部分恰好分割為兩個(gè)長方形,面積分別為S1S2.已知小長方形紙片的長為a,寬為b,且a>b.當(dāng)AB長度不變而BC變長時(shí),將6張小長方形紙片還按照同樣的方式放在新的長方形ABCD內(nèi),S1S2的差總保持不變,則ab滿足的關(guān)系是

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB延長線上一點(diǎn),D為線段BC上一點(diǎn),CD2BDE為線段AC上一點(diǎn),CE2AE

(1)AB18,BC21,求DE的長;

(2)ABa,求DE的長;(用含a的代數(shù)式表示)

(3)若圖中所有線段的長度之和是線段AD長度的7倍,則的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長為()
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】賽龍舟是端午節(jié)的主要習(xí)俗,某市甲乙兩支龍舟隊(duì)在端午節(jié)期間進(jìn)行劃龍舟比賽,從起點(diǎn)A駛向終點(diǎn)B,在整個(gè)行程中,龍舟離開起點(diǎn)的距離y(米)與時(shí)間x(分鐘)的對應(yīng)關(guān)系如圖所示,請結(jié)合圖象解答下列問題:

1)起點(diǎn)A與終點(diǎn)B之間相距多遠(yuǎn)?

2)哪支龍舟隊(duì)先出發(fā)?哪支龍舟隊(duì)先到達(dá)終點(diǎn)?

3)分別求甲、乙兩支龍舟隊(duì)的yx函數(shù)關(guān)系式;

4)甲龍舟隊(duì)出發(fā)多長時(shí)間時(shí)兩支龍舟隊(duì)相距200米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲處工作的有272人,在乙處工作的有196人,如果要使得乙處工作的人數(shù)是甲處工作人數(shù)的,應(yīng)從乙處調(diào)多少人到甲處?若設(shè)應(yīng)從乙處調(diào)x人到甲處,則下列方程中正確的是( )

A. 272+x=196x B. 272x=196x

C. 272+x=196+x D. 272+x=196x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)求證:2CD2=AD2+DB2

查看答案和解析>>

同步練習(xí)冊答案