如圖,AB與⊙O相切于點(diǎn)B,AO的延長線交⊙O于點(diǎn)C,連接BC,若∠A=40°,則∠C=______.
如圖:連接OB,
∵AB與⊙O相切于點(diǎn)B,
∴∠OBA=90°,
∵∠A=40°,
∴∠AOB=50°,
∵OB=OC,
∴∠C=∠OBC,
∵∠AOB=∠C+∠OBC=2∠C,
∴∠C=25°.
故答案是:25°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為弦,直線BC是⊙O的切線,OC交AB于P,PC=BC.
(1)求證:OA⊥OC;
(2)已知⊙O的半徑為3,CP=4,求弦AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.
(1)求證:AC是△BDE的外接圓的切線;
(2)若AD=2
6
,AE=6
2
,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,以O(shè)為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,切點(diǎn)為C,若AB=2
3
cm,OA=2cm,則圖中陰影部分(扇形)的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一副斜邊相等的直角三角板(∠DAC=45°,∠BAC=30°),按如圖所示的方式在平面內(nèi)拼成一個四邊形.
(1)A,B,C,D四點(diǎn)在同一個圓上嗎?如果在,請寫出證明過程;如果不在,請說明理由;
(2)過點(diǎn)D作直線lAC,求證:l是這個圓的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC是直角三角形,∠ABC=90°,以AB為直徑的⊙O交AC于點(diǎn)E,點(diǎn)D是BC邊的中點(diǎn),連接DE.
(1)試判斷直線DE與⊙O的位置關(guān)系?并說明理由;
(2)若⊙O的半徑為
3
,DE=3,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn),BP的延長線交⊙O于點(diǎn)Q,過點(diǎn)Q的直線交OA延長線于點(diǎn)R,且RP=RQ
求證:直線QR是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過點(diǎn)B作⊙O的切線交直線AC于點(diǎn)D,點(diǎn)E為CH的中點(diǎn),連接AE并延長交BD于點(diǎn)F,直線CF交AB的延長線于G.
(1)求證:AE•FD=AF•EC;
(2)求證:FC=FB;
(3)若FB=FE=2,求⊙O的半徑r的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知⊙O是以坐標(biāo)原點(diǎn)O為圓心,1為半徑的圓,∠AOB=45°,點(diǎn)P在x軸上運(yùn)動,若過點(diǎn)P且與OA平行的直線與⊙O有公共點(diǎn),設(shè)P(x,0),則x的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊答案