如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O 是△EFG斜邊上的中點.
如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s 的速度沿射線AB方向平移,在△EFG 平移的同時,點P從△EFG的頂點G出發(fā),以1cm/s 的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移.設(shè)運動時間為x(s),F(xiàn)G的延長線交 AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).
(1)當x為何值時,OP∥AC ?
(2)求y與x 之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13∶24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)

解析:
p;【解析】略
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

(7分)有甲,乙兩個形狀完全相同容器都裝有大小相同一個進水管和一個出水管,兩容器單位時間進、出的水量都是一定的.已知甲容器單開進水管第10分鐘把空容器注滿;然后同時打開進、出水管,第30分鐘可把甲容器的水放完,甲容器中的水量Q(升)隨時間t(分)變化的圖像如圖1所示。.而乙容器內(nèi)原有一部分水,先打開進水管5分鐘,再打開出水管,進、出水管同時開放,第20分鐘把容器中的水放完,乙容器中的水量Q(升)隨時間t(分)變化的圖像如圖2所示。求乙容器內(nèi)原有水多少升

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(7分)有甲,乙兩個形狀完全相同容器都裝有大小相同一個進水管和一個出水管,兩容器單位時間進、出的水量都是一定的.已知甲容器單開進水管第10分鐘把空容器注滿;然后同時打開進、出水管,第30分鐘可把甲容器的水放完,甲容器中的水量Q(升)隨時間t(分)變化的圖像如圖1所示。.而乙容器內(nèi)原有一部分水,先打開進水管5分鐘,再打開出水管,進、出水管同時開放,第20分鐘把容器中的水放完,乙容器中的水量Q(升)隨時間t(分)變化的圖像如圖2所示。求乙容器內(nèi)原有水多少升

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省灌云縣穆圩中學(xué)中考模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

有甲,乙兩個形狀完全相同容器都裝有大小相同一個進水管和一個出水管,兩容器單位時間進、出的水量都是一定的.已知甲容器單開進水管第10分鐘把空容器注滿;然后同時打開進、出水管,第30分鐘可把甲容器的水放完,甲容器中的水量Q(升)隨時間t(分)變化的圖像如圖1所示。.而乙容器內(nèi)原有一部分水,先打開進水管5分鐘,再打開出水管,進、出水管同時開放,第20分鐘把容器中的水放完,乙容器中的水量Q(升)隨時間t(分)變化的圖像如圖2所示。求乙容器內(nèi)原有水多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

有甲,乙兩個形狀完全相同容器都裝有大小相同一個進水管和一個出水管,兩容器單位時間進、出的水量都是一定的.已知甲容器單開進水管第10分鐘把空容器注滿;然后同時打開進、出水管,第30分鐘可把甲容器的水放完,甲容器中的水量Q(升)隨時間t(分)變化的圖像如圖1所示。.而乙容器內(nèi)原有一部分水,先打開進水管5分鐘,再打開出水管,進、出水管同時開放,第20分鐘把容器中的水放完,乙容器中的水量Q(升)隨時間t(分)變化的圖像如圖2所示。求乙容器內(nèi)原有水多少升?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省黃岡市二月份中考摸底考試數(shù)學(xué)卷 題型:解答題

(7分)有甲,乙兩個形狀完全相同容器都裝有大小相同一個進水管和一個出水管,兩容器單位時間進、出的水量都是一定的.已知甲容器單開進水管第10分鐘把空容器注滿;然后同時打開進、出水管,第30分鐘可把甲容器的水放完,甲容器中的水量Q(升)隨時間t(分)變化的圖像如圖1所示。.而乙容器內(nèi)原有一部分水,先打開進水管5分鐘,再打開出水管,進、出水管同時開放,第20分鐘把容器中的水放完,乙容器中的水量Q(升)隨時間t(分)變化的圖像如圖2所示。求乙容器內(nèi)原有水多少升

 

查看答案和解析>>

同步練習冊答案