k為任何實(shí)數(shù),拋物線(xiàn)y=-+k的頂點(diǎn)在

[  ]

A.直線(xiàn)y=x上
B.直線(xiàn)y=-x上
C.x軸上
D.y軸上
答案:A
解析:

是(k,k)

即其橫縱坐標(biāo)相等,所以一定在直線(xiàn)y=x上。

選A。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=-x2+(m-2)x+3(m+1).
(1)求證:無(wú)論m為任何實(shí)數(shù),拋物線(xiàn)與x軸總有交點(diǎn);
(2)設(shè)拋物線(xiàn)與y軸交于點(diǎn)C,當(dāng)拋物線(xiàn)與x軸有兩個(gè)交點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè))時(shí),如果∠CAB或∠CBA這兩角中有一個(gè)角是鈍角,那么m的取值范圍是
 
;
(3)在(2)的條件下,P是拋物線(xiàn)的頂點(diǎn),當(dāng)△PAO的面積與△ABC的面積相等時(shí),求該拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•順義區(qū)二模)已知拋物線(xiàn)y=3x2+mx-2
(1)求證:無(wú)論m為任何實(shí)數(shù),拋物線(xiàn)與x軸總有兩個(gè)交點(diǎn).
(2)若m為整數(shù),當(dāng)關(guān)于x的方程3x2+mx-2=0的兩個(gè)有理根在-1與
4
3
之間(不包括-1、
4
3
)時(shí),求m的值.
(3)在(2)的條件下.將拋物線(xiàn)y=3x2+mx-2在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新圖象G,再將圖象G向上平移n個(gè)單位,若圖象G與過(guò)點(diǎn)(0,3)且與x軸平行的直線(xiàn)有4個(gè)交點(diǎn),直接寫(xiě)出n的取值范圍
11
12
<n<3
11
12
<n<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•白云區(qū)一模)已知拋物線(xiàn)y=x2+kx+2k-4
(1)當(dāng)k=2時(shí),求出此拋物線(xiàn)的頂點(diǎn)坐標(biāo);
(2)求證:無(wú)論k為任何實(shí)數(shù),拋物線(xiàn)都與x軸有交點(diǎn),且經(jīng)過(guò)x軸一定點(diǎn);
(3)已知拋物線(xiàn)與x軸交于A(x1,0)、B(x2,0)兩點(diǎn)(A在B的左邊),|x1|<|x2|,與y軸交于C點(diǎn),且S△ABC=15.問(wèn):過(guò)A,B,C三點(diǎn)的圓與該拋物線(xiàn)是否有第四個(gè)交點(diǎn)?試說(shuō)明理由.如果有,求出其坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=
1
2
x2-(m-3)x+
5-4m
2

(1)求證:無(wú)論m為任何實(shí)數(shù),拋物線(xiàn)與x軸總有兩個(gè)交點(diǎn);
(2)若A(n-3,n2+2)、B(-n+1,n2+2)是拋物線(xiàn)上的兩個(gè)不同點(diǎn),求拋物線(xiàn)的解析式和n的值;
(3)若反比例函數(shù)y=
k
x
(k>0,   x>0)
的圖象與(2)中的拋物線(xiàn)在第一象限內(nèi)的交點(diǎn)的橫坐標(biāo)為x0,且滿(mǎn)足2<x0<3,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=x2+kx+k-2.
(1)求證:不論k為任何實(shí)數(shù),拋物線(xiàn)與x軸總有兩個(gè)交點(diǎn);
(2)若反比例函數(shù)y=
m
x
的圖象與y=-
6
x
的圖象關(guān)于y軸對(duì)稱(chēng),又與拋物線(xiàn)交于點(diǎn)A(n,-3),求拋物線(xiàn)的解析式;
(3)若點(diǎn)P是(2)中拋物線(xiàn)上的一點(diǎn),且點(diǎn)P到兩坐標(biāo)軸的距離相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案